
TIER IAM BackBone Scenario
Simple Backbone Usage Scenario for which TIER will Demo Solutions

Narrative

The Backbone Usage Scenario is intended to illustrate the simplest possible end-to-end example of TIER in action. The story begins with a new hire or a
new student arriving at a hypothetical university, having their basic ERP-based demographic and affiliation information incorporated into the core entity
registry, passing through an identity match process to determine if the person is already represented in the registry.

Once in the registry, the new arrival should be provisioned with an account and credentials in a general purpose LDAP directory. Further automated
processing of the ERP data ipopulates basic affiliation groups in Grouper (in this demo, the affiliations will be faculty or student). Finally, there is a
Shibboleth-protected "Learning Management System" accessed by the faculty member or student through SAML-based Web-SSO. The LMS will display
either a course design page (for faculty) or a course catalog (for students).

The steps in the scenario can be traced from the numbered items in the third column of the table below.

Identity Ecosystem Column TIER Functional Service Functionality in BackBone Scenario

Systems of Record Registration and
Enrollment from SoR
(BennO, KeithH)

1.1) Provides periodic feed (most SoRs can do this today, daily, hourly, etc)

Filtering/Routing/Integration Rule
Engine

Rule Engine Service
(SteveC)

Registration and
Enrollment from
SoR>Search
/Match (KeithH)

Credential Management (W
arrenC)

Rule-Driven Group
Management (SteveC,
ChrisH)

2.1) For each SoR person, use the IdMatch API to see if this person already exists
in the Registry

2.2) For ADD operations

2.2.1) If IdMatch found, update the existing Registry entry (un-soft-delete if
necessary)

2.2.2) If no match found, create a new Registry entry, and send “new user” event
in the Lifecycle Management Engine (lizard brain or ?) which triggers replication to
LDAP and Credential Store

2.2.2.1) LDAP and Kerberos for reference implementation? The Shib plug-in for
Web SSO authentication is the integration point for alternate AuthN methods

2.2.3) Assignment of a one-time token good for a userid/password credential (or
challenge questions? (both approaches have been discussed) 2.3.4) Notify user to
visit “Activate” page.

2.2.5) Create group memberships based on affiliation attributes in the input feed.
Drive this from a rule in the rudimentary provisioning engine, aka "lizard brain".

Translate the syntax/semantics of the local feed to standard TIER format
Invoke TIER utility to process that file
A Grouper loader (cron) would query to keep track of entry changes or
track attribute changes
Brown feeding registry changes directly to Grouper
UW: Changes are fed to LDAP; Grouper as backend; many many sources
of subjects for reference groups
BillT: Use loader or keep up to date with RT updater; Groups

2.2.5.1) If AFFILIATION from SoR = faculty then add person to Group “Instructor”

2.2.5.2) If AFFILIATION from SoR = student then add person to Group “Learner”

2.2.5.3) Grouper groups update LDAP groups; isMemberOf in Shib SAML
assertions comes from LDAP

2.3) For DROP operations, TAG the user appropriately in the Registry (“soft
delete”); this would cause updates in LDAP and Kerberos (expire account), and
remove them from groups.

https://spaces.at.internet2.edu/pages/viewpage.action?pageId=98306894

1.
2.

3.
a.

b.
4.

5.

Repositories Repository Components
(BennO EthanD, KeithH)

3.1) Provide IdMatch API

3.2) Provide Add Person API

3.3) Provide DROP Person API

3.4) Provide add person X to group Y API

3.5) Provide remove person X from group Y API

Provisioning

/Rules Engine

Provision/De-provisioning
Person Entity (BillT with
help from JonM)

Rules Engine (SteveC)

4.1) When person is added replicate them to ldap

4.2) When person is added replicate them to kerberos

4.3) When person is dropped flaf as soft-deleted or remove them(?) from ldap

4.4) When person is dropped remove/disable them from kerberos

4.5) When person is added to group update linked ldap group

4.6) When person is dropped from a group update the linked ldap group

Capabilities of the backbone and
associated application. Demo in
this manner…

 5.1) Configure the sample Service Provider application to use Shibboleth as its Web
SSO mechanism

5.2) Configure requested attributes element on Shib session protected endpoints,
ask for displayName and isMemberOf

5.3) Have registered users browse to the protected application

5.4) Users authenticate at their IDP

5.5) Depend on LDAP for the initial user authentication behind the IDP, Release
attributes X, Y, Z to the SP application

5.6.1) If authenticated user isMemberOf the Instructor Group, show a hello {name}
“Course Design” page

5.6.2) If authenticated user isMemberOf the Learner Group, show a hello {name}
“Course Catalog” page

What minimal Lego-Block collection of functional interfaces are needed to actually build a proof of
concept implementation?

Minimal IDmatch API implementation for first round demonstration sandbox
Evaluation of rules engine longer term will include a review of and its business process (including workflow) and rules http://activiti.org
capabilities
Suggestion to review more use cases, considering the human beings' role in the processes, as a guide to requirements on the UI
Leverage a tool like PWM for account and credential management. https://github.com/pwm-project/pwm Evaluate its utility as a way to
do all the messy work around account and credential management. It can do tokens, password recover questions, reset to personal
email, SMS message to mobile, and more. Based on initial look at the documentation this looks like a good "lego" for the TIER package

Implementation Guidelines

COmanage should be the basis for one implementation in the demonstration sandbox.
A second implementation using midPoint for the Entity Registry and Provisioning functions is under assembly at https://midpoint.testbed.tier.

. internet2.edu
One challenge: How do we successfully complete all steps of this story without implementing a full-fledged rules engine?

The now famous ‘lizard brain’ (simple) rules engine is one answer. It would need to be barely smart enough to do the simple logic behind
the (SoR feed)-to-(Registry user attribute)-to-(Grouper Group), and behind the process that adding to ‘faculty’ group should trigger
provisioning to LDAP and Kerberos.
midPoint provides this kind of rule-based provisioning functionality

The Entity Registry may simply inform a provisioning engine: “This Resource changed and here’s its current representation”. This can be
accomplished via either a push over RESTful APIs or as an event message payload on a queue or pub-sub channel or both.
Beyond simple add/remove faculty and students; one individual tends to have multiple hats, each hat implies access to a particular set of services

http://activiti.org/
https://github.com/pwm-project/pwm
https://testbed.tier.internet2.edu/secure/
https://testbed.tier.internet2.edu/secure/

	TIER IAM BackBone Scenario

