
Grouper Development Environment using Gradle

Wiki
Home

Grouper Release
Announcements

Grouper
Guides

Grouper Deployment
Guide

Community
Contributions

Internal Developer
Resources

Overview

A functional gradle build environment exists in the Github repository in branch "gradle". The build is orchestrated by a parent build.gradle file for the root
grouper project and a number of individual build.gradle file for every module that Grouper presently houses. Each build.gradle file inherits from the parent
build.gradle file and in turn is able to specify its own requirements for dependency management and source tree structure. The list of Grouper modules that
are recognized by the Gradle build is specified via a settings.gradle in a specific order to account for the build dependencies of the modules. There is also
one gradle.properties file which hosts specific build settings for the project, such as groupid, java version and dependency versions used throughout the
project.

Build

To run the full build, issue the following command at the root:

./gradlew build -x test -x javadoc --parallel --stacktrace

The same command can be used inside a specific module directory to build that module only.

The above command will use the Gradle wrapper to download an appropriate Gradle version once to be used for the build. This removes the requirement
for a developer to explicitly have Gradle downloaded and installed, but if a Gradle installation is already available, the same command can be used via
invoking the native Gradle instance installed. Build artifacts are produced for each module inside the build/libs directory. JAR files are produced for main,
tests and javadoc.

./gradle build -x test -x javadoc --parallel --stacktrace

The following gradle commands may also prove useful during development:

Show all the project dependencies
./gradle dependencies

Show where a specific dependency for a gradle configuration comes from
./gradle dependencyInsight --dependency <name> --configuration <compile/runtime/testCompile/...>

Prepare an Intellij IDEA workspace for Grouper
./gradle idea

Prepare an Eclipse project workspace for Grouper
./gradle eclipse

Gradle Wrapper Updates

The Gradle wrapper need only exist at the root of the project. The wrapper can be updated to note a specific newer version of a Gradle via the following
command:

./gradle wrapper

Branch Info

You can use "-x" to skip specific tasks during the build lifecycle.

Windows Gradle Wrapper

Windows version of the wrapper command is also available as gradlew.bat

https://spaces.at.internet2.edu/display/Grouper/Grouper+Wiki+Home
https://spaces.at.internet2.edu/display/Grouper/Grouper+Wiki+Home
https://spaces.at.internet2.edu/display/Grouper/Grouper+Release+Announcements
https://spaces.at.internet2.edu/display/Grouper/Grouper+Release+Announcements
https://spaces.at.internet2.edu/display/Grouper/Grouper+Administration+Guides
https://spaces.at.internet2.edu/display/Grouper/Grouper+Administration+Guides
https://spaces.at.internet2.edu/display/Grouper/Grouper+Deployment+Guide
https://spaces.at.internet2.edu/display/Grouper/Grouper+Deployment+Guide
https://spaces.at.internet2.edu/display/Grouper/Community+Contributions
https://spaces.at.internet2.edu/display/Grouper/Community+Contributions
https://spaces.at.internet2.edu/display/GrIntDev/Grouper+Internal+Development+Home
https://spaces.at.internet2.edu/display/GrIntDev/Grouper+Internal+Development+Home

Javadocs

To produce the Javadoc for the entire project, run the following command at the root:

./gradlew build alljavadoc -x test -x javadoc --parallel --stacktrace

The above command aggregates the javadocs for all grouper modules inside the root build/javadoc directory.

Travis CI Builds

Grouper is configured against Travis CI to execute the full build on every commit. Travis builds all grouper branches provided there is a .travis.yml inside
the branch at the root of the repository. This is a YAML configuration file that tells Travis what version of Java should be available, which commands to use
for the build lifecycle and which scripts to execute after a successful build.

Publishing Javadocs

As part of the Travis CI build, Javadocs are published to the gh-pages of the repository, , once a successful builds. This is available on the web here
handled via the script that runs after the build. The script will attempt to collect all project javadocs and push them to the appropriate javadocs-ghpages.sh
branch. In order for the push to succeed, an OAUTH token is made available to the script to do the job. The OAUTH token must be generated by a
developer with push rights to the repo, and must be encrypted and placed inside the .travis.yml file under a "secure" heading.

OAUTH token can be encrypted for Travis via the following command:

gem install travis
travis login --github-token <TOKEN>
travis encrypt GH_TOKEN=<GH-TOKEN>-r Internet2/grouper

The TOKEN must be generated by you inside your . This is used to allow you to log into Travis.Github profile settings
The GH-TOKEN must be generated by you inside your . This is used to allow Travis to push to the gh-pages branch. Github profile settings
When the values are encrypted, they are printed back on the screen. Copy/paste them to the .travis.yml file under env/secure entry.

Publishing SNAPSHOTs

As part of the Travis CI build, SNAPSHOT artifacts for all grouper modules listed in the settings.gradle file are published to the Sonatype snapshot
 once a successful builds. This is handled via the that runs after the build. The script will attempt will repositories for Grouper deploy-to-sonatype.sh script

collect all JAR artifacts produced by the build and will attempt to publish them. The command that used by the script is:

./gradlew uploadArchives -DpublishSnapshots=true -DsonatypeUsername=$SONATYPE_USER -
DsonatypePassword=$SONATYPE_PWD

The above command invokes the "uploadArchives" task of Gradle to start publishing. The configuration of this task is specified in the root build.gradle file.

In order for the command to succeed, a developer must provide his/her own Sonatype credentials, and must also be authorized to publish artifacts to the
edu.internet2.grouper namespace. Credentials that are required for the command to succeed are encrypted and placed inside the .travis.yml file under a
"secure" heading. The developer must also be authorized to have access to the "Settings" area of the Grouper github repository.

Sonatype credentials can be encrypted for Travis via the following command:

Branch Info

The configuration file must be massaged for every branch to tell Travis to limit the build to that branch only, for faster builds.

Branch Info

The script file must be massaged for every branch to tell Travis to limit the build to that branch only.

Branch Info

The script file must be massaged for every branch to tell Travis to limit the build to that branch only.

https://spaces.at.internet2.edu/internet2.github.io/grouper/
https://github.com/Internet2/grouper/blob/master/travis/javadocs-ghpages.sh
https://github.com/settings/tokens
https://github.com/settings/tokens
https://oss.sonatype.org/content/repositories/snapshots/edu/internet2/middleware/grouper
https://oss.sonatype.org/content/repositories/snapshots/edu/internet2/middleware/grouper
https://github.com/Internet2/grouper/blob/master/travis/deploy-to-sonatype.sh

gem install travis
travis login --github-token <TOKEN>
travis encrypt SONATYPE_USER=yourUsername -r Internet2/grouper
travis encrypt SONATYPE_PWD=yourPassword -r Internet2/Grouper

The TOKEN must be generated by you inside your . Github profile settings
When the values are encrypted, they are printed back on the screen. Copy/paste them to the .travis.yml file under env/secure entry.

Development environment

Open morphstring in eclipse
Delete .classpath and .project
Set java home and path

C:\Users\mchyzer\Documents\GitHub\grouper\grouper>set JAVA_HOME=C:\dev_inst\java7
C:\Users\mchyzer\Documents\GitHub\grouper\grouper>set PATH=%JAVA_HOME%\bin;%PATH%

sdf

https://github.com/settings/tokens

	Grouper Development Environment using Gradle

