
1.

2.
a.

3.

Writing Registry Plugins

Registry functionality can be extended with the use of . Plugins

Building a Registry Plugin requires knowledge of PHP, CakePHP,

and COmanage.

1. Building a Registry Plugin
1.1. Background
1.2. Instantiated vs Non-
Instantiated
1.3. Plugin Directory
1.4. Plugin Model
1.5. Database Schema
1.6. Foreign Key
Dependencies
1.7. Language Texts
1.8. Enumerations
1.9. Use of Standard Views
1.10. Server Definitions
1.11. Menu Links

1.11.1. Menu Link
Icons
1.11.2. Example

1.12. Search
1.13. Duplicating COs
1.14. Related Actions Links
1.15. REST API

1.15.1. Filtering Index
Views

2. Additional Requirements By
Plugin Type

1. Building a Registry Plugin

1.1. Background

Understand the . You should minimally have worked through the Cake Framework tutorials and
.examples

Understand . Registry Plugins are just Cake Plugins, with some extra conventions.Cake Plugins
 In general, when implementing a Cake callback in a plugin, call the parent as well.

eg, in a plugin's , call .beforeValidate() parent::beforeValidate($options)
Understand the .Registry Data Model

1.2. Instantiated vs Non-Instantiated

There are two basic categories of Plugins supported by COmanage Registry.

Instantiated plugins must be configured before they can be used. For example, the LDAP
Provisioner must be given connection information that is specific to each CO. Creating that
configuration is the plugin.instantiating
Non-Instantiated plugins do not have CO-specific configuration. For example, normalizing
whitespace is not CO specific.

This categorization is based on how Registry handles the plugin. An instantiated plugin follows a typical
add/edit flow in order to use the plugin, with entry points described in the Additional Requirements By

 section, below.Plugin Type

It is possible for a non-instantiated plugin to maintain its own configuration, however Registry provides no
direct support for configuring non-instantiated plugins.

 It is possible that non-instantiated plugins will be converted to instantiated plugins in future releases
as Registry capabilities evolve. Such a conversion may require changes to the plugin interfaces.

1.3. Plugin Directory

2. Additional
Requirements By
Plugin Type
Plugin Types not listed here have no
additional requirements.

Authenticator Plugins
Cluster Plugins
Dashboard Widget Plugins
Data Filter Plugins
Enrollment Flow Plugins
Identifier Assignment Plugins
Identifier Validation Plugins
Invitation Confirmer Plugins
Job Plugins
LDAP Schema Plugins
Normalization Plugins
Organizational Identity Source
Plugins
Provisioner Plugins
Vetter Plugins

If you just need to publish static documents, see Publishing Mostly Static Public Content
instead.

https://spaces.at.internet2.edu/display/COmanage/Installing+and+Enabling+Registry+Plugins
http://book.cakephp.org/2.0/en/index.html
http://book.cakephp.org/2.0/en/tutorials-and-examples.html
http://book.cakephp.org/2.0/en/tutorials-and-examples.html
http://book.cakephp.org/2.0/en/plugins.html
https://spaces.at.internet2.edu/display/COmanage/Registry+Data+Model
https://spaces.at.internet2.edu/display/COmanage/Authenticator+Plugins
https://spaces.at.internet2.edu/display/COmanage/Cluster+Plugins
https://spaces.at.internet2.edu/display/COmanage/Dashboard+Widget+Plugins
https://spaces.at.internet2.edu/display/COmanage/Data+Filter+Plugins
https://spaces.at.internet2.edu/display/COmanage/Enrollment+Flow+Plugins
https://spaces.at.internet2.edu/display/COmanage/Identifier+Assignment+Plugins
https://spaces.at.internet2.edu/display/COmanage/Identifier+Validation+Plugins
https://spaces.at.internet2.edu/display/COmanage/Invitation+Confirmer+Plugins
https://spaces.at.internet2.edu/display/COmanage/Job+Plugins
https://spaces.at.internet2.edu/display/COmanage/LDAP+Schema+Plugins
https://spaces.at.internet2.edu/display/COmanage/Normalization+Plugins
https://spaces.at.internet2.edu/display/COmanage/Organizational+Identity+Source+Plugins
https://spaces.at.internet2.edu/display/COmanage/Organizational+Identity+Source+Plugins
https://spaces.at.internet2.edu/display/COmanage/Provisioner+Plugins
https://spaces.at.internet2.edu/display/COmanage/Vetter+Plugins
https://spaces.at.internet2.edu/display/COmanage/Publishing+Mostly+Static+Public+Content

1.

2.

Set up a new Plugin in the directory . You might find it handy to use Cake's local/Plugin/MyPlugin b
 command.ake

$ cd app
$./Console/cake bake plugin MyPlugin
Welcome to CakePHP v2.7.1 Console

App : app
Path: /home/user/src/comanage/git/registry/app/

1. /home/user/src/comanage/git/registry/local/Plugin/
2. /home/user/src/comanage/git/registry/app/Plugin/
3. /home/user/src/comanage/git/registry/plugins/
Choose a plugin path from the paths above.
[1] > 1

1.4. Plugin Model

Create a Model whose name matches the name of the Plugin. In this example, the Model is
created at .app/Plugin/MyPlugin/Model/MyPlugin.php
Define to indicate the type of the Plugin, from the following options:$cmPluginType

$cmPluginType Description Available
Since

Instantiated?

authenticator Authenticator Plugin v3.1.0 Yes

cluster Cluster Plugin v3.3.0 Yes

confirmer Invitation Confirmer Plugin v3.1.0 No

dashboardwidget Dashboard Widget Plugin v3.2.0 Yes

datafilter Data Filter Plugin v3.3.0 Yes

enroller Enrollment Flow Plugin v0.9.4 Yes, as of v4.0.0

identifierassig
ner

Identifier Assignment Plugin v4.1.0 No

identifiervalid
ator

Identifier Validation Plugin v2.0.0 Optional

job Job Plugin v3.3.0 Yes, when queued

ldapschema LDAP Schema Plugin v2.0.0 Yes, via LDAP schema
configuration

normalizer Normalization Plugin v0.9.2 No

orgidsource Organizational Identity Sources
Plugin

v2.0.0 Yes

provisioner Provisioning Plugin v0.8 Yes

vetter Vetting Plugin v4.1.0 Yes

other Any other type of Plugin v0.8 No

As of v2.0.0, may also be an array. A Plugin that implements more than one $cmPluginType
plugin type is referred to as a . Note that, due to naming conventions and Polymorphic Plugin
other constraints, not all combinations of plugin types may currently be supported. These
constraints will be removed over time as Plugin interfaces are updated.

Here's an example Model:

class LdapProvisioner extends AppModel {
 // Required by COmanage Plugins
 public $cmPluginType = "provisioner";
}

Prior to v1.0.0, Plugins must be placed in .app/Plugin/MyPlugin

https://spaces.at.internet2.edu/display/COmanage/Authenticator+Plugins
https://spaces.at.internet2.edu/display/COmanage/Cluster+Plugins
https://spaces.at.internet2.edu/display/COmanage/Invitation+Confirmer+Plugins
https://spaces.at.internet2.edu/display/COmanage/Dashboard+Widget+Plugins
https://spaces.at.internet2.edu/display/COmanage/Data+Filter+Plugins
https://spaces.at.internet2.edu/pages/viewpage.action?pageId=87756108
https://spaces.at.internet2.edu/display/COmanage/Identifier+Assignment+Plugins
https://spaces.at.internet2.edu/display/COmanage/Identifier+Validation
https://spaces.at.internet2.edu/display/COmanage/Job+Plugins
https://spaces.at.internet2.edu/display/COmanage/LDAP+Schema+Plugins
https://spaces.at.internet2.edu/display/COmanage/Normalizing+Data
https://spaces.at.internet2.edu/display/COmanage/Organizational+Identity+Sources
https://spaces.at.internet2.edu/display/COmanage/Provisioning+From+Registry
https://spaces.at.internet2.edu/display/COmanage/Registry+Person+Vetting

1.5. Database Schema

Plugins have full access to the Registry database. You can create your own additional tables by creating
a schema file and placing it in . The file is specified Plugin/MyPlugin/Config/Schema/schema.xml
in .ADOdb AXMLS format

Tables should follow the Cake standard conventions, including , , and .id created modified

Once the file is created, the database schema will automatically be updated by the normal mechanism:

$ cd app
$./Console/cake database

1.6. Foreign Key Dependencies

If you define tables for your plugin, you will almost certainly want foreign keys into the core database
schema. For example, your tables may have or to refer to CO People or COs, co_person_id co_id
respectively.

In order for deletes to cascade successfully when the parent object is deleted, you must specify any
dependencies your plugin has. (Failure to do so will result in foreign key violation errors when the parent
object is deleted.) To do so, define an array in , which $cmPluginHasMany Model/MyPlugin.php
consists of an array where the keys are the model the foreign key points to and the values are the name
of the model they point from.

For example:

// Document foreign keys
public $cmPluginHasMany = array(
 "CoPerson" => array("CoChangelogProvisionerExport")
);

CoPerson . Put another way, hasMany CoChangelogProvisionerExports co_changelog_provis
 has a column that is a foreign key to .ioner_exports co_person_id co_people

As of Registry v3.2.0, also accepts a standard Cake model dependency array. eg:$cmPluginHasMany

// Document foreign keys
public $cmPluginHasMany = array(
 "CoPerson" => array(
 "CoAnnouncementPosterCoPerson" => array(
 'className' => 'CoAnnouncement',
 'foreignKey' => 'poster_co_person_id'
)
)
);

1.7. Language Texts

Database Prefixing

For the most part, the database prefix as specified in the will just database configuration file
work. The exception is that foreign keys must have the prefix explicitly hardcoded (). CO-174
For now, using the prefix is recommended.cm_

Unfreezing Foreign Keys

As of Registry v3.3.3, foreign keys are by default frozen when a record is initially saved. For
example, if your record has a foreign key to , once the record is created it co_person_id
can't be reassigned to a new CO Person.

For more information, see .Unfreezing Foreign Keys

http://phplens.com/lens/adodb/docs-datadict.htm
https://spaces.at.internet2.edu/display/COmanage/Registry+Installation+-+Database
https://bugs.internet2.edu/jira/browse/CO-174
https://spaces.at.internet2.edu/display/COmanage/Multitenancy+Considerations#MultitenancyConsiderations-MultitenancyConsiderations-UnfreezingForeignKeys

Do not hardcode display texts, but instead create lookup files that translate keys into language specific
texts. For now, Registry uses a custom mechanism for I18N/L10N (). Use or CO-351 _txt(key) _txt

 in your code to generate language-specific text, and then define (key, array(param1, param2))
those keys in the file :Plugin/MyPlugin/Lib/lang.php

// When localizing, the number in format specifications (eg: %1$s)
indicates the argument
// position as passed to _txt. This can be used to process the arguments
in
// a different order than they were passed.

$cm_my_plugin_texts['en_US'] = array(
 // Titles, per-controller
 'ct.co_my_plugin_model.1' => 'My Plugin Model',
 'ct.co_my_plugin_model.pl' => 'My Plugin Models',

 // Plugin texts
 'pl.myplugin.someparam' => 'Some Parameter',
 'pl.myplugin.another' => 'Another Parameter'
);

1.8. Enumerations

Plugins may define enumerations in :Plugin/MyPlugin/Lib/enum.php

class MyPluginFruitEnum
{
 const Apple = 'A';
 const Orange = 'O';
}

1.9. Use of Standard Views

You may use Registry's "standard" views to easily render your pages in the Registry look. Simply create
links from to . See core Registry Plugin/MyPlugin/View/Model ../../../../View/Standard
views for examples. Note that you will need to define the language texts and ct.co_X_model.1 ct.

 to use the standard views, replacing with the name of your model.co_X_model.pl X

1.10. Server Definitions

Registry v3.2.0 introduces Server objects, which are intended to reduce duplicate configuration, and
allow multiple plugins (or other components) to share the same server information and state. Plugins
should use Server objects for configuration whenever possible. To do so, the CO Administrator is
expected to define the Server outside of the Plugin. Then, during configuration, the Plugin should present
a list of available Servers of the desired type and store the foreign key reference to that configuration.

To obtain the list of available Server, any model associated with a controller that extends
StandardController can set

public $cmServerType = ServerEnum::ServerType

The corresponding view will be passed , with a list of available servers keyed by $vv_servers server_
.id

1.11. Menu Links

Plugins can add items to Registry's menus. To do so, define in a function Model/MyPlugin.php cmPlu
 that returns an array. The key in this array is the menu location to append to (see table ginMenus()

below), and the value is another array, which defines one or more labels and the corresponding
controllers and actions to generate links to. The Plugin infrastructure will automatically append CO IDs
and CO Person IDs as appropriate.

Whether or not a Plugin menu is rendered is determined by the default permission as listed below.

https://bugs.internet2.edu/jira/browse/CO-351

Menu
Location
Key

Menu
Location*

Default
Permission

Icon? CO ID
Inserted?

CO Person
ID Inserted?

Available
Since

canvas CO Person
Canvas sidebar

CO Person v4.1.0

cmp Platform Menu CMP
Administrator

v0.8

cos Collaborations
Menu

 Removed v3.
0.0

Member of
Any CO

v0.8 - v3.0.0

coconfig CO
Configuration
Menu

CO
Administrator

v0.8

comain CO Main Menu Member of CO v3.2.0

copeople CO People Menu Member of CO v0.8

cogroups CO Groups Menu Member of CO v1.0.0

coperson My Identities
Menu

Member of CO v0.8

coservices CO Services
Menu

 Removed v3.
0.0

Member of CO v2.0.0 - v3.
0.0

1.11.1. Menu Link Icons

As of Registry v3.2.0, icons are required in two contexts: and . The icon is specified coconfig comain
by a special key in the menu URL array, and references the name of a or icon Material Design icon jQue

, depending on context.ry icon

1.11.2. Example

/**
 * Expose menu items.
 *
 * @since COmanage Registry v0.9.2
 * @return Array with menu location type as key and array of labels,
controllers, actions as values.
 */

public function cmPluginMenus() {
 return array(
 "coperson" => array(_txt('pl.dirviewer.viewmenu') =>
 array('controller' => "dir_viewers",
 'action' => "view")),
 "coconfig" => array(_txt('pl.dirviewer.viewcfg') =>
 array('icon' => "visibility",
 'controller' => "dir_viewers",
 'action' => "index"))
);
}

1.12. Search

As of Registry v3.2.0, Plugins may implement searching as part of the main box.search

First, declare which plugin models support search in by defining a function Model/MyPlugin.php cmPl
 that returns an array, keyed on plugin model, of displayField and permissions:uginSearchModels()

https://material.io/tools/icons
https://api.jqueryui.com/theming/icons/
https://api.jqueryui.com/theming/icons/
https://spaces.at.internet2.edu/display/COmanage/Searching+and+Filtering

/**
 * Declare searchable models.
 *
 * @since COmanage Registry v3.2.0
 * @return Array Array of searchable models
 */

public function cmPluginSearchModels() {
 return array(
 'MyPlugin.Dir' => array(
 // The model field to display in the results
 'displayField' => 'name',
 // Which types of users may search this model
 'permissions' => array('cmadmin', 'coadmin', 'couadmin', 'comember')
)
);
}

Next, in each supported model add a function that implements the backend search($coId, $q)
search, based on the provided CO ID and unparsed search string. (Be sure to add databases indexes as
needed.) Return an array of search results in the same format as .find()

/**
 * Perform a keyword search.
 *
 * @since COmanage Registry v3.2.0
 * @param integer $coId CO ID to constrain search to
 * @param string $q String to search for
 * @param integer $limit Search limit, added in Registry v4.0.0
 * @return Array Array of search results, as from find('all)
 */

public function search($coId, $q, $limit) {
 // Tokenize $q on spaces
 $tokens = explode(" ", $q);

 $args = array();

 foreach($tokens as $t) {
 $args['conditions']['AND'][] = array(
 'OR' => array(
 'LOWER(Dir.name) LIKE' => '%' . strtolower($t) . '%',
)
);
 }

 $args['conditions']['Dir.co_id'] = $coId;
 $args['order'] = array('Dir.name');
 $args['limit'] = $limit;
 $args['contain'] = false;

 return $this->find('all', $args);
}

1.13. Duplicating COs

This feature is available since Registry v3.2.0.

When a CO is duplicated, Registry will attempt to copy configuration data, but not operational data (such
as CO Person records).

Models that may retrieve large numbers of records (such as Name) or that perform substring
searches (such as Address) should use (which generates a single query Linkable Behavior
using JOIN) instead of Containable Behavior (which generates at least one additional query
for each result).

https://github.com/Internet2/comanage-registry/blob/develop/app/Plugin/Linkable/README.md

For Instantiated plugins, duplication will attempt to copy plugin configuration. By default, this will involve
copying data in the core model for the plugin, eg: for plugins or CoFooProvisionerTarget provisioner

 for plugins. However, it is possible to override this default behavior in order to FooSource orgidsource
duplicate additional configuration records associated with the plugin. To do so, in the plugin's core model
define $duplicatableModels, which is an array of relevant models and their configuration (parent model
and foreign keys). For example:

// CoAnnouncementsWidget.php
public $duplicatableModels = array(
 "CoAnnouncementChannel" => array(
 "parent" => "Co",
 "fk" => "co_id"
),
 // If you set $duplicatableModels, then you must also list the core
model as well
 "CoAnnouncementsWidget" => array(
 "parent" => "CoDashboardWidget",
 "fk" => "co_dashboard_widget_id"
)
);

 Duplication does not currently support Non-Instantiated plugins.

1.14. Related Actions Links

Adding links to Related Actions is not currently supported. ()CO-520

1.15. REST API

Exposing Plugin functionality via the REST API is not currently officially supported (), however as CO-521
of Registry v3.2.0 it is possible for plugins to expose a REST API. This feature is considered experimental
, as future releases may impose structure to standardize or simplify the process.

To expose an API, the plugin will most likely need to defined routing in .$PLUGIN/Config/routes.php
The plugin may use the standard Cake call, and may leverage Registry's mapResources()
ApiComponent. For more details, see example plugins or core code. More detailed documentation will be
available when REST APIs for plugins are fully supported.

Note that plugin API paths will be prefixed with the plugin name, as with web pages. ie: /registry
./some_plugin/controller/action/id

1.15.1. Filtering Index Views

Most REST API "View" calls can be filtered somehow, such as view all items by CO or CO Person.
Plugins may wish to filter by a Plugin-specific data element. As of Registry v3.3.0, this is possible by
declaring in the appropriate Model file. Note this is the Model associated with $permittedApiFilters
the desired REST API (eg:), which is not necessarily the primary Plugin Model/MyOtherModel.php
Model ().Model/MyPlugin.php

The content of is an array, where each key corresponds to a column (which $permittedApiFilters
must be a foreign key) in the Model and the value is the related Model that will implement the desired
filtering. By way of example, consider a plugin that implements two models: Boxes and Labels, where
Box hasMany Label. To enable the REST API to retrieve all Labels associated with a given Box, add the
following to :Model/Label.php

Model/Label.php

public $permittedApiFilters = array(
 'box_id' => 'MyPlugin.Box'
);

Controllers in must include the plugin.mapResources()

Router::mapResources(array(
 'PluginModel.plugin_model_widgets'
));

https://bugs.internet2.edu/jira/browse/CO-521
https://bugs.internet2.edu/jira/browse/CO-521
https://book.cakephp.org/2.0/en/development/rest.html

This will enable the REST call .GET /registry/my_plugin/labels.json?box_id=X

	Writing Registry Plugins

