
1.

2.

3.

4.

5.

6.

7.

8.

9.

Interim Report Items
Interim Report Notes from the OSIdM4HE Provisioning Subcommittee

Provisioning Is Critical We remain convinced that provisioning is a critical capability of an effective IdM stack for higher ed, and that its scope
extends not only to moving information between components of the stack (although that may be very important to provide for) but also to moving
information between the stack and external, connected systems.
Primary Goal Is Consistency We seem to have settled, roughly, on the idea that the primary function of a provisioning facility is to produce and
maintain, through the lifecycle of a provisionable resource, consistency between that resource's representation in some source facility (which we
expect in this case to be a registry, although we would look to the Registry group to consider questions of whether a single registry or some form
of logical meta-registry is appropriate). We have some commitment to the concept of "consistency" rather than "synchronization", largely in
recognition of the possibility that a target system may represent a resource differently than the source system but may still need its representation
to reflect the same semantic content as the source system. (We are working on developing a more formal definition of this notion of consistency,
now).
Provisioning Scope Extends Beyond Just People We seem convinced that a successful IdM stack will scope its provisioning mechanism(s) in
a way that allows for provisioning not only of traditional person identities but also of other classes of identity-related or identity-dependent
resources – groups, roles, privileges, etc. As to whether actual delivery of provisioning features unique to non-person entities is critical for an
initial offering or not, I don't think we're as certain, but the general timber of our discussions seems to have led to including non-person objects
and their attributes in the collection of resources a good provisioning system should be capable of manipulating.
Provisioning Needs to Minimize Latency we're confident that a successful provisioning facility will ensure, to the extent that any technology can
under possibly varying conditions of performance and availability, that inconsistencies between source and target systems introduced when
source data (again, typically in a registry) changes will be resolved in target systems with a minimum of latency, and that under routine
circumstances, target systems' representations will be kept consistent far more of the time than they are inconsistent.
Provisioning Needs to Include Repair We recognize that in pursuit of low-latency, there may be times at which "incremental" provisioning fails
to meet the standard for on-average consistency above, and that at certain boundaries (such as the inception of a new provisioning facility, a new
target facility, or a new connection between existing provisioning facilities and target facilities) there may be a need to instantiate consistency
between sources and targets without the aid of "triggering" changes in the source facilities. As such, we note that any complete provisioning
solution must surely include support for the notion of a "full resync" or "reconcile and repair" process by which inconsistencies introduced through
error or architectural change may be addressed without the introduction of synthetic "events" in source systems.
Provisioning Should Embrace More Than One Mode Of Operation Items (4) and (5), I think we've determined, can be achieved in a number
of different ways, each well-suited to different classes of provisioning scenario (enterprise, federated, and "cloud", for example) and sometimes to
different strategic goals ("just in time" versus "just in case") and different consumer strategies ("push" versus "pull", etc.). So far, I don't think
we've necessarily ruled out any of the options for implementation as either infeasible or unable to provide value under any conditions, so I don't
know that we can identify any specific mix of options as "the" solution strategy. To some extent, that may be a matter for the developers to weigh
in on as much as for us to consider at this point in the process. That said, I think we have a general sense that given the possible spread of target
capabilities that may be encountered, it may not be possible to select exactly one collection of strategic positions (eg., to say that the provisioning
facility need only support "just in case, push" provisioning). We are likely to instead need to aim for a "spanning set" of interoperable tools and
processes that collectively address the needs identified in the use cases we choose (with the wider effort) to address.
Provisioning Facilities Must Support Multiple Sources and Targets A well-designed provisioning facility needs to have the capacity to support
a wide range of target or connected systems. It seems reasonable that we might focus our efforts on or even limit our efforts to the OSIdM4HE
provisioning facility consuming information from OS4IdM4HE registries, rather than from external "authoritative" sources. The provisioning facility,
however, should employ a well-documented and well-specified interface for interacting with its data source(s)/registries, that should be well-
implemented in its initial release – should other sources be deemed important in specific deployments, there should be support for developers'
use of those same standard interfaces. In essence, I suspect we'd advocate pushing the responsibility for supporting multiple source systems
onto the registry, standardizing on a single (preferably open-standard) consumer interface for the provisioning facility that's negotiated with the
registry developers, and making support for a variety of "downstream" provisioning consumers the greater focus of the OSIdM4HE provisioning
effort. (Note: to the extent to which the Registry effort may lead to the production of multiple source registries, and/or the access management
effort may produce a separate source for provisionable privilege information, we would propose that all intended provisioning sources plan to write
to an agreed upon standard interface that the provisioning facility can implement).
Provisioning Target Flexibility Through Standardization As much as possible, I think we'd like to try and accomplish target flexibility through
implementation of standards-based interfaces for provisioning target systems. We have reviewed a number of existing and nascent provisioning
standards, and would note that the SAML Change Notification work seems very promising (as evidenced by Google's stated support of the effort),
as does SCIM (which has the advantage of a lively and actively open development community). Where "high impact" target systems (read:
GoogleApps, Sakai, etc.) can be identified, we'd advocate trying to negotiate support from them for standard provisioning interfaces. Likewise,
where our community controls high-visibility target systems (Grouper, CoManage, Kuali, etc.).
Provisioning Should Exhibit the Pattern "Standards at the Core and on the Wire, Customization at the End Points" While we recognize
that there are going to be intractable target cases, some of which are likely to be of critical importance to some or all of our community, we would
support the notion that customization of "adapters" should be the province of those target systems, and that their adapters should target a
standards-based interface provided by the provisioning facility, rather than targeting a specific provisioning facility implementation directly. To the
extent that some targets may be more easily adapted to one standard for provisioning than another, we would support the long-term goal of
providing a "spanning set" of standards-based provisioning interfaces.

	Interim Report Items

