
Rough Provisioning Architectural Diagrams
Diagram Description Functional Walk-Thrus

 Authoritative Data Sources - Agreed upon sources for entity information. In
the case of people, these may be central systems for institutionally-mastered
data like payroll or enrollment information, distributed systems for
departmentally-mastered data like academic appointments and job
assignments, or individual people for self-asserted information like preferences
and personal contact information. Some entities may have authoritative
information provided by multiple authoritative data sources. Some data
sources may overlap with other data sources, providing the same attributes
about the same or different entities. Authoritative data sources must provide
some mechanism for interacting with registries in order to have their data
included in institutional identity construction.
Registries - Intelligent repositories for centrally-maintained identity
information. Entity data from authoritative sources is transformed into unique,
persistent identities within the registries. Typically, registries assign unique
identifiers (both persistent and transient), and may enhance authoritative
source data through attribute deconfliction and promotion and through
derivation and compositing of attributes. Registries must interact with
authoritative sources as consumers of data, and must expose the results of
their operations in some useful fashion to provisioning systems.
Provisioning Systems - Engines responsible for exposing and conveying the
results of registry activities to the systems reliant on central identity
information. In a classical view, provisioning engines are responsible for
maintaining the lifecycle of identities and identity information in consumer or
target systems, ensuring that identities minted in registries are properly
reflected in, maintained in, and ultimately deactivated in or removed from
participating consumer or target systems. As identity data in registries evolves,
provisioning engines are responsible for translating registry changes into
appropriate actions relative to their consumers. This may include applying
consumer-specific business logic or implementing certain access control
requirements. Provisioning systems must interact with registries to consume
identity information and identity information changes, and must interact with
consumer systems to create, update, and delete identity information there. In
some scenarios, provisioning systems may interact with other data delivery
systems, such as directories, to provide consumers with realtime access to
data they (the consumers) do not store locally.
Access Control Systems - Much of the identity data managed by these
systems and services is of a profoundly sensitive nature. Access control
systems are responsible for facilitating the expression, persistence, exposure
and in some cases, enforcement of data access policies both between the
other components of the IDM stack and within individual components of the
IDM stack. In the diagram at the left, access control systems are depicted
interacting only with the registry and provisioning systems, but in some
scenarios, access control systems may bypass provisioning systems and
provision access control rules and permissions directly into target systems. In
some models, Access Control systems may provide repositories for
permissions and access policies that are in turn consumed in situ by target
sytems, rather than being provisioned locally to those systems.

 Arrows filled in blue represent "push" data flows.
 Arrows filled in red represent "pull" data flows.

 Arrows filled in orange represent "batch" data flows.
 Arrows filled in purple represent bidirectional data flows.

A1 - Some authoritative sources may implement "live
push" mechanisms for sending data updates to
registries. Registries should have the ability to accept
such live updates.
A2 - Other authoritative sources may implement
mechanisms for retrieving updates from source change
logs, or may expose their entire databases for periodic
difference processing. Registries should have the ability
to consume source data from such systems via "pull"
mechanisms.
A3 - Some authoritative sources may only implement
batch extract/import mechanisms for providing data to
registries. In the interest of consuming complete
authoritative data, registries need to support these batch
export mechanisms, as well.
R1 - Once data has been imported through one of the
A1 - A3 mechanisms above, logic within the registry
normalizes it, matches it with existing normalized data to
verify uniqueness before either using it to create a new
identity (if the data are unique) or update an existing
identity (if the data refer to an existing identity), and
ensures data persistence.
R2 - The registry also applies business logic to
deconflict attribute values that may be provided
differently by multiple authoritative sources, and, and
may enhance authoritative data with derived or
composited attributes.
P1 - The registry provides updates to the provisioning
facility through one or more mechanisms (RPCs,
triggers, change log entries, etc.) in real-time. Updates
may be provided in the form of simple pointers
(indicating that a particular entity has been updated and
should be inspected to determine how the provisioning
facility should respond), complex references (indicating h

 a particular entity has been updated as well as tow that
he entity has been updated) or mandates (indicating
precisely what operations were performed on what
entities).
P2 - The provisioning facility may retrieve information
from the registry for a variety of reasons. In scenarios in
which changes are presented to the provisioning facility
as simple or complex references, the provisioning
facility may be responsible for retrieving the data values
relevant to any given change. In any scenarios, the
provisioning engine may require additional information
stored in the registry but not part of the change itself
(and perhaps related to another, unchanged entity) in
order to complete its computations. Registries need to
expose interfaces to allow provisioning services to
retrieve data as necessary to complete their operations.
I1 - The provisioning facility, having been notified or
having detected in some fashion that a change has
occurred in the registry, may consult various internal
configuration repositories to determine how to
proceed. In some cases, a change may need to be
delivered to multiple consumer systems; in others, a
change may not result in any action on the part of the
provisioning engine. In still others, a change may result
in a cascade of operations being performed involving
one or more consumer systems.
I2 - The provisioning facility may apply business logic to
map changes presented by or detected in the registry
into operations suitable for consumption by a particular
consumer. Such logic may include masking or
transformation of data as well as mapping of attributes
and operations.
C1 The bulk of provisioning operations are expected to
be performed in real- or near real-time through one or
more "push"-oriented connectors targeting specific
groups of pre-identified consumers. Such operations
should take advantage of standards-based interfaces
wherever possible, but in cases in which a standards-
based provisioning interface is not available or cannot
be used effectively, custom code may be required. Note
that the set of authoritative source systems and the set
of consumer systems may not be entirely disjoint from
one another – some consumers may also be
authoritative sources, especially when an authoritative
source is only considered authoritative for one or a
small number of specific attributes. Special care must
be taken in these situations to avoid triggering tail-
recursion during real or near-real-time update
processing.
C2 - A class of consumers likely exists which will prefer
to use some form of directory or other presentation
mechanism to access identity information. While this
"pull" mechanism may take the form of direct queries
against registries in some special cases, the most
common case will likely involve direct provisioning of
identity information into some form of directory by the
provisioning facility, followed by consumers' querying
the directory in real-time as they require identity
information.

1.

2.

3.

4.

5.

6.

7.

8.

C3 - A small class of primarily legacy consumers may
be unable to provide real- or near-real-time interfaces to
the provisioning facility, and may be unable to consume
data in real-time from any form of directory. In these
cases, the provisioning facility needs to exhibit the
ability to produce periodic data extracts based on the
content of registries, and to provide those in some
fashion to consuming systems. Such extracts may
consist of complete data extracts for subsets of
identities interesting to specific consumers, or may
consist of incremental change reports.
V1 - By virtue of their holding sensitive and sometimes
confidential information about persons and possibly
other entities, it is critical that access to registries and
registry information be consistently managed.
Interaction between registries and the access control
facility may be of at least two forms – the access control
facility may need to directly assign permissions within
registries based on its access rules and privilege
configuration, and it may also need to consume data
from registries in order to make access management
decisions.
V2 - While the provisioning facility is not expected to
maintain permanent stores of sensitive (nor common)
information, it will require the support of the access
control facility to ensure that provisioning tasks are not
used to bypass the data access rules enforced in the
registries. It may also act as the active engine for
provisioning access control information into consuming
systems, where appropriate. Simultaneously, the access
control facility may itself become a consumer of
provisioning data in some scenarios (eg., rather than
directly retrieving information from the registry, an
access control facility may be designed to consume that
information via the provisioning facility).

In this diagram, the connectors do not communicate with the identity registry at all,
and in a lot of ways, the connectors are dump, i.e., they can only do what they are
"told" by the messaging system. So, with that in mind, it goes without saying that the
consumers can not ask the connectors for information, i.e., a system can now perform
a query against the connector. The flow is from the top of the diagram to the bottom.

Starting with an Identity Registry (this diagram is not at all concerned with how
data gets into the registry, nor how it is reconciled), any changes to a person's
identity will be reflected in some kind of standard changlog. The changelog
could be any number of things, but it should adhere to some standard for how
changes are reflected.
The Changelog/Event Reader could either be internal to the Identity Registry or
external, but the purpose of the Reader is to read changes from the Identity
Registry, and push them onto the messaging layer. Depending on how
complex the connector is, these changes could be partial records, full records,
consolidated records, or just the ID of the person who's data changed.
The Messaging layer, of course, provides topics/queues that will be read by the
Connectors.
The Connectors, again, depending on how complex they are, could either just
take the entire message as is and perform the change (add, modify, delete)
against the consumers.
The Connectors can either have logic for what exactly the consumers are
allowed to consumer, or that logic could be in the Changelog/Even reader
which pushes the changes to the Messaging system (meaning that only the
changes/data that are available for a given consumer ever make it to the
Messaging system).

 Scenario 1 - Last Name Change by Employee
(update push from registry to comsumers), with
Changelog/Event Reader doing the bulk of

Sarah Jones' name has changed in the processing
Identity Registry.# The Changelog/Even Reader picks
up the change, queries the Identity Registry for the rest
of Sara's information, and pushes the entire record to
the Messaging system. If the messaging system is
down, the Reader will try again later.

The Messaging system now has the change and is
prepared for the Connectors to get the change.
The Connectors pick up the change as is and send a
modify request to the consumers. If any of the
consumers are down, the message will remain in the
Messaging system until the consumer becomes
available and the connector can again process the
request.* Scenario 2 - Last Name Change by
Employee (update push from registry to
comsumers), with Changelog/Event Reader doing
the bulk of processing, but only for the data that has

Sarah Jones' name has changed in the changed
Identity Registry.
The Changelog/Even Reader picks up the change and
pushes only the changes to the Messaging system. If
the messaging system is down, the Reader will try again
later.
The Messaging system now has the change and is
prepared for the Connectors to get the change.
The Connectors pick up the change as is and send a
modify request to the consumers. If any of the
consumers are down, the message will remain in the
Messaging system until the consumer becomes
available and the connector can again process the
request.* Scenario 3 - Last Name Change by
Employee (update push from registry to
comsumers), with Connector doing the bulk of

Sarah Jones' name has changed in the processing
Identity Registry.
The Changelog/Even Reader picks up the change, and
pushes Sarah's ID to the Messaging system noting that
it was a change. If the messaging system is down, the
Reader will try again later.
The Messaging system now has the change and is
prepared for the Connectors to get the change.
The Connectors pick up the change, query the Identity
Registry, and/or some other system(s) to create the full
record, and send a modify request to the consumers. If
any of the consumers are down, the message will
remain in the Messaging system until the consumer
becomes available and the connector can again process
the request.

1.

2.

3.

4.

5.

6.

7.

8.

Data enters the Provisioning Engine in one of three primary ways – "pushed"
into the provisioning interface via a trigger (or other mechanism) fired from the
layer above (presumed to be one of the IdM registries), "pushed" into the
provisioning interface via an administrative UI (for use by administrators in
manually "forcing" provisioning actions to occur), or through a set of adapter
API routines designed to allow the provisioning engine itself to retrieve data
from the layer above (eg., in the event that completing a provisioning task
started by a trigger from an IdM registry requires access to other data in the
same or a different registry). It is the responsibility of the "Collection" layer and
its associated modules to manage the interface between the registries and the
Provisioning Engine, and to marshal and collect the information required by the
Provisioning Engine.
The provisioning engine in turn is responsible for applying business logic,
including attribute access controls, attribute transformations, and dependency
computations.
The Delivery layer is then responsible for taking the finalized output of the
provisioning engine and, based on pre-arranged subscription information,
selecting particular consumers and their associated delivery mechanisms and
triggering them to provision data (according to their own configuration and
protocol specifications) to consumer systems.
The Delivery layer relies on a collection of protocol- and/or consumer-specific
modules to actually drive its provisioning efforts. Multiple consumers may use
the same delivery protocol module (eg., SCIM may be used to provision into
more than one consumer) but multiple protocol modules may be used by
multiple different consumers.
A special case collection of consumers are the presentation layer interfaces
(eg., directories). Provisioning into those consumers is not typically performed
for their own purposes, but in order to allow still other, secondary consumers to
access the provisioned information via "pull" methods (eg., via LDAP). Some
consumers may also use custom APIs to directly "pull" data directly from the
IdM registries (much as the API adapters associated with the provisioning
engine's collection layer do) but those are not considered in-scope in this
diagram).
All layers of the provisioning stack are responsible for interacting with an audit
logging interface, whose responsibility is to build and maintain audit trails
suitable for debugging as well as reporting on the history of data passed
through the provisioning stack.
The stack includes persistence and scheduling mechanisms in support of time-
dependent provisioning operations (eg. to support a rule of the form "all
terminated employees' "employee" affiliations should be removed at the time of
termination, and their electronic mailboxes and Kerberos principals should be
disabled 14 days following their termination). The same persistence
mechanism might also be used to support "retry-on-failure" options (eg., if a
triggered event cannot be processed immediately due to a failure in the
consumer system or in the network between the provisioning system and the
consumer, the event might be queued and retried on some fixed schedule
some number of times before being completely dropped).

Scenario 1 - Last Name Change by Employee
(update push from registry to consumers with
persistence)# Sarah Jones marries and changes her
legal last name as recorded by the SSA from "Jones" to
"Morgenstern". Her HR representative is notified, and
after properly validating her new legal documentation,
records the last name change in the HR ERP.# That
change makes its way from the HR ERP into a campus
person registry, where it results in an update to the "SN"
attribute in the person registry for Sarah's entry.# That
update causes the registry to call out to an "update"
trigger in the provisioning module, passing Sarah's
unique identifier, a "change SN" operation tag, and
"prior value" and "new value" qualifiers of "Jones" and
"Morgenstern" as arguments.

The update routine in the data collection layer of the
provisioning module in turn passes the information to
the engine layer, which consults subscription data and
business logic definitions to determine that three
consumer systems are subscribed to SN changes for
Sarah's entry, and that the SN value is to be passed to
all three of them unmodified.
The engine layer in turn hands off the update to two
connector modules – the SCIM module (which passes
the update via a SCIM "push" request to two of the three
subscribed consumers) and a custom LDAP update
module (which passes the update directly into a campus-
wide LDAP directory used for white pages searches).
The SCIM updates both succeed, but due to the LDAP
consumer being in maintenance mode at the time of the
update, the LDAP update fails, and the custom
connector module reports an unsuccessful return code
back to the engine layer. The Engine layer sends the
update to its persistence module, where the update is
archived for later resubmission to the custom module.
Some 20 minutes later, the scheduling module triggers
a scan of the persistence repository for failed updates,
and re-queues the update of Sarah's SN attribute to the
custom LDAP module that failed it previously. The
LDAP consumer is now in an operative state, and
accepts the update. The connector reports successful
completion of the operation back to the engine, which
records the update as successful via a call to the audit
logging module and discards it.* Scenario 2: Side
Effects of Affiliation Changes (and additional data

John Wesley Harding has been a full-time collection)
employee in Accounts Payable for three years, taking a
part-time course load in an effort to complete a Masters
degree in Finance. He decides to complete his last two
semesters of course work as a full-time student, and
resigns his staff position to become a full-time student.
The employee ERP system registers John's termination
as en employee, while the student ERP system
registers his transition from part-time to full-time student
status, and notifies the person registry of these
changes. The person registry recomputes John's
affiliation and primary affiliation attributes, changing his
records to reflect that he is now primarily a full-time
student.
As an employee, John's preferred name has been
restricted to matching his official first name, but as a
student, he reported in his enrollment paperwork that his
preferred first name is "Wes". As a student, John has
the right to assert FERPA protections over some of his
student records information, and he has requested
anonymity under FERPA (out of concern that his boss
might think ill of him were he to find out about his part-
time enrollment in the Finance graduate program).
When the person registry calls the provisioning module's
"update primary affiliation" trigger to change his
affiliation from "staff" to "student", the provisioning
engine detects that four consumer systems are
subscribed to changes in John's affiliation. It also
detects that three of those four consumer systems need
to implement FERPA restrictions, while the fourth (an
internal system used for student registration) is
authorized to maintain student records information
despite FERPA restrictions.
The provisioning engine calls out to an API interface in
the collection layer to retrieve John's FERPA
preferences and his "student preferred first name"
attribute from the person registry. After applying the
associated business logic, the engine passes affiliation
updates to four separate consumers via the SCIM,
SPML, and two custom delivery adapters, and passes a
"givenName" update to the student registration
application via SPML (replacing John's official employee-
derived first name of "John" with his preferred student
first name of "Wes"). All updates succeed, are recorded
via the audit logging layer, and subsequently discarded.

	Rough Provisioning Architectural Diagrams

