
excerpt from LDAP RFC 2251 on attributes and attribute
options
4.1.4. Attribute Type

An AttributeType takes on as its value the textual string associated
with that AttributeType in its specification.

AttributeType ::= LDAPString

Each attribute type has a unique OBJECT IDENTIFIER which has been
assigned to it. This identifier may be written as decimal digits
with components separated by periods, e.g. "2.5.4.10".

A specification may also assign one or more textual names for an
attribute type. These names MUST begin with a letter, and only
contain ASCII letters, digit characters and hyphens. They are case
insensitive. (These ASCII characters are identical to ISO 10646
characters whose UTF-8 encoding is a single byte between 0x00 and
0x7F.)

If the server has a textual name for an attribute type, it MUST use a
textual name for attributes returned in search results. The dotted-
decimal OBJECT IDENTIFIER is only used if there is no textual name
for an attribute type.

Attribute type textual names are non-unique, as two different
specifications (neither in standards track RFCs) may choose the same
name.

A server which masters or shadows entries SHOULD list all the
attribute types it supports in the subschema entries, using the
attributeTypes attribute. Servers which support an open-ended set of
attributes SHOULD include at least the attributeTypes value for the
'objectClass' attribute. Clients MAY retrieve the attributeTypes
value from subschema entries in order to obtain the OBJECT IDENTIFIER
and other information associated with attribute types.

Wahl, et. al. Standards Track Page 12

RFC 2251 LDAPv3 December 1997

Some attribute type names which are used in this version of LDAP are
described in . Servers may implement additional attribute types.5

4.1.5. Attribute Description

An AttributeDescription is a superset of the definition of the
AttributeType. It has the same ASN.1 definition, but allows
additional options to be specified. They are also case insensitive.

AttributeDescription ::= LDAPString

A value of AttributeDescription is based on the following BNF:

<AttributeDescription> ::= <AttributeType> [";" <options>]

<options> ::= <option> | <option> ";" <options>

<option> ::= <opt-char> <opt-char>*

<opt-char> ::= ASCII-equivalent letters, numbers and hyphen

Examples of valid AttributeDescription:

cn
userCertificate;binary

One option, "binary", is defined in this document. Additional
options may be defined in IETF standards-track and experimental RFCs.
Options beginning with "x-" are reserved for private experiments.
Any option could be associated with any AttributeType, although not
all combinations may be supported by a server.

#
#

An AttributeDescription with one or more options is treated as a
subtype of the attribute type without any options. Options present
in an AttributeDescription are never mutually exclusive.
Implementations MUST generate the <options> list sorted in ascending
order, and servers MUST treat any two AttributeDescription with the
same AttributeType and options as equivalent. A server will treat an
AttributeDescription with any options it does not implement as an
unrecognized attribute type.

The data type "AttributeDescriptionList" describes a list of 0 or
more attribute types. (A list of zero elements has special
significance in the Search request.)

AttributeDescriptionList ::= SEQUENCE OF
AttributeDescription

Wahl, et. al. Standards Track Page 13

RFC 2251 LDAPv3 December 1997

4.1.5.1. Binary Option

If the "binary" option is present in an AttributeDescription, it
overrides any string-based encoding representation defined for that
attribute in . Instead the attribute is to be transferred as a5
binary value encoded using the Basic Encoding Rules . The syntax11
of the binary value is an ASN.1 data type definition which is
referenced by the "SYNTAX" part of the attribute type definition.

The presence or absence of the "binary" option only affects the
transfer of attribute values in protocol; servers store any
particular attribute in a single format. If a client requests that a
server return an attribute in the binary format, but the server
cannot generate that format, the server MUST treat this attribute
type as an unrecognized attribute type. Similarly, clients MUST NOT
expect servers to return an attribute in binary format if the client
requested that attribute by name without the binary option.

This option is intended to be used with attributes whose syntax is a
complex ASN.1 data type, and the structure of values of that type is
needed by clients. Examples of this kind of syntax are "Certificate"
and "CertificateList".

4.1.6. Attribute Value

A field of type AttributeValue takes on as its value either a string
encoding of a AttributeValue data type, or an OCTET STRING containing
an encoded binary value, depending on whether the "binary" option is
present in the companion AttributeDescription to this AttributeValue.

The definition of string encodings for different syntaxes and types
may be found in other documents, and in particular .5

AttributeValue ::= OCTET STRING

Note that there is no defined limit on the size of this encoding;
thus protocol values may include multi-megabyte attributes (e.g.
photographs).

Attributes may be defined which have arbitrary and non-printable
syntax. Implementations MUST NEITHER simply display nor attempt to
decode as ASN.1 a value if its syntax is not known. The
implementation may attempt to discover the subschema of the source
entry, and retrieve the values of attributeTypes from it.

Clients MUST NOT send attribute values in a request which are not
valid according to the syntax defined for the attributes.

Wahl, et. al. Standards Track Page 14

RFC 2251 LDAPv3 December 1997

4.1.7. Attribute Value Assertion

The AttributeValueAssertion type definition is similar to the one in
the X.500 directory standards. It contains an attribute description
and a matching rule assertion value suitable for that type.

#
#
#
#
#

AttributeValueAssertion ::= SEQUENCE {
attributeDesc AttributeDescription,
assertionValue AssertionValue }

AssertionValue ::= OCTET STRING

If the "binary" option is present in attributeDesc, this signals to
the server that the assertionValue is a binary encoding of the
assertion value.

For all the string-valued user attributes described in , the5
assertion value syntax is the same as the value syntax. Clients may
use attribute values as assertion values in compare requests and
search filters.

Note however that the assertion syntax may be different from the
value syntax for other attributes or for non-equality matching rules.
These may have an assertion syntax which contains only part of the
value. See section 20.2.1.8 of X.501 for examples.6

4.1.8. Attribute

An attribute consists of a type and one or more values of that type.
(Though attributes MUST have at least one value when stored, due to
access control restrictions the set may be empty when transferred in
protocol. This is described in section 4.5.2, concerning the
PartialAttributeList type.)

Attribute ::= SEQUENCE {
type AttributeDescription,
vals SET OF AttributeValue }

Each attribute value is distinct in the set (no duplicates). The
order of attribute values within the vals set is undefined and
implementation-dependent, and MUST NOT be relied upon.

#
#

	excerpt from LDAP RFC 2251 on attributes and attribute options

