
1.  

2.  

Registry Transmogrification
Transmogrification is the process by which data is migrated from a Registry v4 instance to Registry v5.

Preparing for Transmogrification
1. Unpool Organizational Identities
2. Instantiate Extended Types
3. Migrate Login Identifiers
4. Check Group Names
5. Consider Archival Requirements

Setting Up Databases
Install Database Schema

Running Transmogrification
Supported Tables
Transmogrification Warnings and Errors

Found existing CO Person for Org Identity #, skipping
Skipping record #: Could not find value for org_identities co_person_id
Skipping record #: CO ID not provided for Identifier.type
Skipping record # due to invalid foreign key
Skipping record #: member not set on GroupMember
Skipping record #: Type not found for #+Identifier.type+epuid+

Preparing for Transmogrification

1. Unpool Organizational Identities

Platforms brought up on Registry v3.0.0 or earlier had the option to enable  . This setting is no longer supported. Org Organizational Identity Pooling
Identities must be unpooled prior to Transmogrification.

2. Instantiate Extended Types

COs that were created using Registry v0.9.1 or earlier may be relying on default attribute types. For any such CO, click "Add/Restore Default Types" (via C
 >  ) for each available attribute.onfiguration Extended Types

From v0.9.2,  were enabled by default.Extended Types

3. Migrate Login Identifiers

Login Identifiers are now attached to the  , not the Organizational Identity. Transmogrification can be passed flags to migrate login Identifiers. Person
Multiple flags can be provided. If no flags are provided Transmogrification will not perform any actions, except that login flags will be removed from 
Identifiers not associated with a Person.

--login-identifier-copy: For any Identifier associated with an Org Identity that is flagged for login, a copy will be made attached to the 
associated Person record.
--login-identifier-type: For any Identifier associated with an Org Identity that is of the specified type, a copy will be made attached to the 
associated Person record. The specified type should be the legacy v4 type string (eg: ) and not the transmogrified foreign key.eppn

4. Check Group Names

Group name restrictions are more strictly enforced, and non-conformant names will cause the Group to not Transmogrify correctly. Check for any 
problematic names and fix them prior to running Transmogrification. Specifically:

Standard Groups may not be named starting with the string " ". This prefix is reserved for System Groups created by Registry, and existing CO:
System Groups (such as Administrator Groups) should not be renamed. ( )AR-Group-9
Two Groups within the same CO may not have the same name. ( )AR-Group-1

5. Consider Archival Requirements

As part of Transmogrification, certain database tables that are no longer required will not be migrated to the new database. This includes

Transmogrification   supports upgrading from Registry v4.x to Registry v5.0.x. Deployments on versions prior to v5.x must upgrade to the only
latest v4.x release first. If Registry has moved on to version v5.1.0 or later, upgraders must first upgrade to the latest v5.0.x before upgrading 
again to the latest release.

https://spaces.at.internet2.edu/display/COmanage/Organizational+Identity+Pooling
https://spaces.at.internet2.edu/display/COmanage/Extending+the+Registry+Data+Model#ExtendingtheRegistryDataModel-ExtendingtheRegistryDataModel-ExtendedTypes
https://spaces.at.internet2.edu/display/COmanage/Registry+Identifiers#RegistryIdentifiers-RegistryIdentifiers-LoginIdentifiers
#
#


cm_co_org_identity_links: With the elimination of pooled Organizational Identities, OrgIdentities are linked directly to a CoPerson, and this 
intermediate table is no longer required.
cm_org_identities: Org Identities that are not linked to a CO Person will not be migrated to the new database, nor will their associated data (such 
as  ). This includes Org Identities that were created from an Org Identity Source, but not linked (typically via a Pipeline) to a CO Person. cm_names
Additionally, Org Identities that do have null (or empty) affiliations will not be migrated.

Some tables are also changed in a significant enough way that it is not possible to migrate all old records. This includes

cm_co_group_members: This table is split into two (  and ), and handling of non-manual memberships (eg: from group_members group_owners gro
) is changing. Certain rows, including empty rows and changelog archives, are not migrated as there is not a consistent way to up_nestings

migrate these records.
cm_co_jobs: Legacy job types (those prior to v4.0.0) cannot be migrated as they are no longer supported. Additionally, queued or in progress 
jobs are not migrated to avoid potential upgrade conflicts.

Additionally, deprecated or obsolete columns that were left in place to facilitate upgrading older versions will not be migrated to the new database.

It may be desirable to create a read-only archive of the old database for future auditing or historical needs.

Setting Up Databases

Transmogrification requires two database configurations in :local/config/database.php

default: The new, target database that will be used for v5+ going forward. This database should initially be completely empty (ie: newly CREATE
d).
transmogrify: The source v4 database that will be converted. Transmogrification will not modify this database in any way, but the database 
does need to be in a consistent state (ie: no transactions running), so it may make sense to use a snapshot for test loads rather than pointing to a 
production instance. Also, make sure no cron jobs might cause changes to state.

 (A template for this file can be found in .)app/config/database.php.dist

Install Database Schema

Install the database schema as follows;

$ cd $REGISTRY/app
$ ./bin/cake database

Do   use the  command.not setup

Running Transmogrification

$ ./bin/cake transmogrify [-vq] [--login-identifier-copy] [--login-identifier-type <type>] [table [...]]

where

--login-identifier-copy: See  , aboveMigrate Login Identifiers
--login-identifier-type <type>: See  , aboveMigrate Login Identifiers

A list of tables may be provided, however this should only be used by developers or those with very specific needs. Tables must be specified in 
dependency order.

Supported Tables

Not all tables can be automatically transmogrified, additional steps may be required to migrate certain configurations from v4.

Supported Not Supported

ad_hoc_attributes
addresses

dashboards
external_identity_sources (formerly org_identity_sources)

Transmogrification only supports MySQL/MariaDB and Postgres.

For deployments considering switching from MySQL/MariaDB to Postgres, Transmogrification may be an easier way to do so (in comparison to 
other migration techniques).

https://spaces.at.internet2.edu/display/COmanage/cm_co_org_identity_links
https://spaces.at.internet2.edu/display/COmanage/cm_org_identities
https://spaces.at.internet2.edu/display/COmanage/cm_names
https://spaces.at.internet2.edu/display/COmanage/cm_co_group_members
https://spaces.at.internet2.edu/display/COmanage/Registry+Table%3A+group_members
https://spaces.at.internet2.edu/display/COmanage/Registry+Table%3A+group_owners
https://spaces.at.internet2.edu/display/COmanage/Registry+Table%3A+group_nestings
https://spaces.at.internet2.edu/display/COmanage/Registry+Table%3A+group_nestings
https://spaces.at.internet2.edu/display/COmanage/cm_co_jobs


api_users
authentication_events
co_settings
cos
cous
email_addresses
external_identities
group_members
group_nestings
groups
history_records
identifiers
job_history_records
jobs
names
people
person_roles
telephone_numbers
types (formerly extended_types)
urls

identifier_assignments
provisioning_history_records (formerly provisioning_exports)
provisioning_targets
servers

Transmogrification Warnings and Errors

Transmogrification may generate various warnings, which will not stop processing, and errors, which will. In general, warnings and errors will go to 
STDERR, so it is possible to use shell redirects to capture output for subsequent review. eg:

$ ./bin/cake transmogrify 2> ~/stuff-to-look-at.log

-v and  can be used respectively to increase and decrease the output level.-q

Found existing CO Person for Org Identity #, skipping

In trying to build an internal map of Org Identities to CO People, Transmogrification found an existing CO Person for the specified Org Identity. This most 
likely indicates the Org Identities was not correctly unpooled prior to running Transmogrification.

Skipping record #: Could not find value for org_identities co_person_id

Transmogrification could not map the specified OrgIdentity to a CoPerson (via cm_co_org_identity_links). ie: This is an unlinked OrgIdentity, and will not 
be migrated.

Skipping record #: CO ID not provided for Identifier.type

The Identifier record could not be mapped to a CO, most likely because it is attached to an OrgIdentity that was not linked to a CO Person (and therefore 
not migrated).

Skipping record # due to invalid foreign key

A dependent record was not loaded. For example, an Identifier derived from a Source OrgIdentity was not migrated because the Source OrgIdentity did 
not migrate due to not being linked to a CO Person. See the provided SQL error for specifics.

Skipping record #: member not set on GroupMember

In Registry v4.x, the table  included flags for both membership and ownership. As of Registry v5, these attributes are stored in cm_co_group_members
separate tables. This warning indicates that a record was found in the source table without a membership flag, and that row is not being copied. (A record 
indicating ownership but not membership will be correctly processed.)

Skipping record #: Type not found for #+Identifier.type+epuid+

The legacy {type} field could not be mapped to a foreign key in the types table, probably because Add/Restore Extended Types was not executed within 
the CO prior to Transmogrification.

https://spaces.at.internet2.edu/display/COmanage/cm_co_group_members

	Registry Transmogrification

