
1.
a.
b.

2.
a.

3.
a.
b.
c.
d.

SQL Source

Modes
Installation
Configuration

Group Mappings
Preparing Source Data

Modified Timestamps
Flat Mode
Relational Mode
Archive Tables

Bootstrapping Archive Tables
Debugging

Table Not Found In Datasource
Archive Tables Appear To Be Ignored

See Also

The SQL Organizational Identity Source Plugin is designed to integrate inbound data via a SQL database. SqlSource is available as of Registry v4.1.0.

Modes
Org Identity Source Mode Support

Manual Search and Linking Supported

Enrollment, Authenticated Not supported

Enrollment, Claim Not supported

Enrollment, Search Supported

Enrollment, Select Supported

Org Identity Sync Mode Support

Full Supported

Query Supported

Update Supported

Manual Supported

Installation
This is a non-core plugin, see for more information.Installing and Enabling Registry Plugins

Configuration
Add a new Server (> >).CO Servers Add a New Server

Set the Server Type to .SQL
Set the appropriate connection information. Note that SqlSource only supports Postgres and MySQL/MariaDB databases.

Add a new Organizational Identity Source (> > >).CO Configuration Organizational Identity Sources Add Organizational Identity Source
Set the Plugin to , and other as appropriate.SqlSource configurations

On the plugin configuration page
Server: Select the Server created above
Table Mode: Select the appropriate table mode, see (below) for more informationPreparing Source Data
Source Table: Enter the exact name of the source table (or primary source table for Relational Mode)
For Flat Mode, set the desired types for the various related models such as and .Name Email Address

Group Mappings

This plugin is experimental, and interfaces may change across minor releases.

https://spaces.at.internet2.edu/display/COmanage/Installing+and+Enabling+Registry+Plugins
https://spaces.at.internet2.edu/display/COmanage/Organizational+Identity+Sources

 tags may be used to configure .Ad Hoc Attribute Group Mappings

Preparing Source Data
Inbound data may be represented using any supported database technique, including physical tables, foreign tables, views, and materialized views, so
long as the representation meets the requirements described in this documentation.

SqlSource supports two modes for importing data.

In , there is a single inbound table with one row per inbound Organizational Identity, with at most one value supported for related Flat Mode
models such as and .Name Email Address
In , there is a primary table with one row per inbound Organizational Identity, and a set of related tables allowing for multiple Relational Mode
values for associated models.

Flat Mode is simpler to set up, but Relational Mode allows for more complex records. There is a small performance penalty for Relational Mode (since
multiple tables or views need to be queried), but this should be negligible under most circumstances.

Modified Timestamps

When processing a , SqlSource will attempt to pull all records from the Source Table. For larger data sets, it is recommended instead to add a full sync mod
 column to the Source Table indicating when the record was last changed. If this column is present, SqlSource will use it instead to obtain a list of ified

updated records. In Relational Mode, only the primary table supports the column. If present, values should be provided for all rows.modified

As of Registry v4.3.0, an additional option using archive tables is available, see below for more information.

Flat Mode

Flat Mode expects a single Source Table whose definition is consistent with the following (the name may be any valid SQL name):

CREATE TABLE my_source_table (
 id integer PRIMARY KEY,
 sorid character varying(1024) UNIQUE,
 honorific character varying(32),
 given character varying(128) NOT NULL,
 middle character varying(128),
 family character varying(128),
 suffix character varying(32),
 affiliation character varying(32),
 date_of_birth date,
 valid_from timestamp without time zone,
 valid_through timestamp without time zone,
 title character varying(128),
 o character varying(128),
 ou character varying(128),
 manager_identifier character varying(512),
 sponsor_identifier character varying(512),
 mail character varying(256),
 identifier character varying(512),
 telephone_number character varying(64),
 address character varying(512),
 url character varying(256),
 -- if the modified column is present, it will be used to detect records changed since the last full sync
 modified timestamp without time zone
);

where

id: A unique integer that serves as a Primary Key. This column is not currently used by SqlSource but may be used in a future release.
sorid: The System of Record Identifier, and must be unique within the table.
honorific, , , , and : Used to construct the (Primary) , which will be assigned the type as configured given middle family suffix Name
above. Which elements are actually required is governed by CO Settings (and).Name Required Fields Name Permitted Fields
affiliation, , , , , , , , : Used to date_of_birth valid_from valid_through title o ou manager_identifier sponsor_identifier
construct the .Org Identity
mail: Used to construct the , which will be assigned the type as configured above.Email Address

In mode, the available set of Ad Hoc Attributes is calculated based on the actual data in the inbound table (described below). Relational Tables
As such, no attributes will be available for Group Mapping until data is populated into the tables.

https://spaces.at.internet2.edu/display/COmanage/Extending+the+Registry+Data+Model
https://spaces.at.internet2.edu/display/COmanage/Organizational+Identity+Sources#OrganizationalIdentitySources-OrganizationalIdentitySources-COGroupMappings
https://spaces.at.internet2.edu/display/COmanage/Organizational+Identity+Sources#OrganizationalIdentitySources-OrganizationalIdentitySources-SyncModes
https://spaces.at.internet2.edu/display/COmanage/cm_names
https://spaces.at.internet2.edu/display/COmanage/cm_org_identities
https://spaces.at.internet2.edu/display/COmanage/cm_email_addresses

identifier: Used to construct the , which will be assigned the type as configured above.Identifier
telephone_number: Used to construct the , which will be assigned the type as configured above. Only the field will Telephone Number number
be populated.
address: A comma separated set of fields used to construct the , which will be assigned the type as configured above. The value Address
consists of the concatenated fields .street,locality,state,postal_code
url: Used to construct the set of fields used to construct the , which will be assigned the type as configured above. Url
modified: If this column is defined, the time this record was last updated (GMT).

Any additional columns will be treated as AdHoc Attributes.

For search and retrieval of larger data sets, indexes should be maintained on the following fields:

sorid
given (lowercase index)
family (lowercase index)
mail
identifier
modified (if the column is defined)

Relational Mode

Relational Mode expects a primary Source Table (whose name is exactly as configured in the plugin configuration) and a series of one or more related
Source Tables (whose name is the Source Table name, an underscore (), and the fixed string describing the related table. Only the table is _ _names
required, all others will be silently skipped if not present. The tables must be consistent with these SQL definitions:

CREATE TABLE my_source_table (
 id integer PRIMARY KEY,
 sorid character varying(1024) UNIQUE,
 affiliation character varying(32),
 date_of_birth date,
 valid_from timestamp without time zone,
 valid_through timestamp without time zone,
 title character varying(128),
 o character varying(128),
 ou character varying(128),
 manager_identifier character varying(512),
 sponsor_identifier character varying(512),
 -- if the modified column is present, it will be used to detect records changed since the last full
sync modified timestamp without time zone
);

CREATE TABLE my_source_table_names (
 id integer PRIMARY KEY,
 sorid character varying(1024) REFERENCES my_source_table (sorid),
 honorific character varying(32),
 given character varying(128) NOT NULL,
 middle character varying(128),
 family character varying(128),
 suffix character varying(32),
 type character varying(32) NOT NULL,
 language character varying(16),
 primary_name boolean
);

CREATE TABLE my_source_table_addresses (
 id integer PRIMARY KEY,
 sorid character varying(1024) REFERENCES my_source_table (sorid),
 street text NOT NULL,
 room character varying(64),
 locality character varying(128),
 state character varying(128),
 postal_code character varying(16),
 country character varying(128),
 type character varying(32) NOT NULL,
 language character varying(16)
);

CREATE TABLE my_source_table_email_addresses (
 id integer PRIMARY KEY,
 sorid character varying(1024) REFERENCES my_source_table (sorid),
 mail character varying(256) NOT NULL,
 type character varying(32) NOT NULL,

https://spaces.at.internet2.edu/display/COmanage/cm_identifiers
https://spaces.at.internet2.edu/display/COmanage/cm_telephone_numbers
https://spaces.at.internet2.edu/display/COmanage/cm_addresses
https://spaces.at.internet2.edu/display/COmanage/cm_urls

 verified boolean
);

CREATE TABLE my_source_table_identifiers (
 id integer PRIMARY KEY,
 sorid character varying(1024) REFERENCES my_source_table (sorid),
 identifier character varying(512) NOT NULL,
 type character varying(32) NOT NULL,
 login boolean
);

CREATE TABLE my_source_table_telephone_numbers (
 id integer PRIMARY KEY,
 sorid character varying(1024) REFERENCES my_source_table (sorid),
 country_code character varying(3),
 area_code character varying(8),
 number character varying(64) NOT NULL,
 extension character varying(16),
 type character varying(32) NOT NULL
);

CREATE TABLE my_source_table_urls (
 id integer PRIMARY KEY,
 sorid character varying(1024) REFERENCES my_source_table (sorid),
 url character varying(256) NOT NULL,
 type character varying(32) NOT NULL
);

CREATE TABLE my_source_table_ad_hoc_attributes (
 id integer PRIMARY KEY,
 sorid character varying(1024) REFERENCES my_source_table (sorid),
 tag character varying(128) NOT NULL,
 value character varying(256)
);

where

id: A unique integer that serves as a Primary Key. This column is not currently used by SqlSource but may be used in a future release.
sorid: The System of Record Identifier, and must be unique within the primary table only. For related tables the sorid is effectively a foreign key
to the primary table.
affiliation, , , , , , , , : Used to date_of_birth valid_from valid_through title o ou manager_identifier sponsor_identifier
construct the .Org Identity
modified: If this column is defined, the time this record was last updated (GMT). Only applies to the primary table.
honorific, , , , , , , and : Used to construct a , at least one of which must given middle family suffix type language primary_name Name
be provided and exactly one of which must be flagged . Which elements are actually required is governed by CO Settings primary_name Name

 (and).Required Fields Name Permitted Fields
street, , , , , , , and : Used to construct an .room locality state postal_code country type language Address
mail, , and : Used to construct an . If is not provided, the Email Address will be considered unverified.type verified Email Address verified
identifier, , and : Used to construct an . If is not provided, the Identifier will not be permitted for login.type login Identifier login
country_code, , , , and : Used to construct a . Only the field will be populated.area_code number extension type Telephone Number number
url and : Used to construct the set of fields used to construct a . type Url
tag and : Used to construct the set of fields used to construct an . value Ad Hoc Attribute

For search and retrieval of larger data sets, indexes should be maintained on the following fields:

sorid (for all tables)
given (lowercase index)
family (lowercase index)
mail
identifier
tag
modified (if the column is defined)

Archive Tables

Registry v4.3.0 adds an additional option for more efficiently determining changed records, using database level diff calculations. It is possible to create Arc
, which are used by SQL Source to track which records have already been processed. Archive Tables are only supported when the hive Tables

corresponding Org Identity Source is operated in .Full or Update Mode

The specific requirements of Archive Tables may be governed by the database server in use, but in general the Archive Tables must have an identical (or
at least "union compatible") definition as the main tables. SQL Source expects the Archive Tables to be named with an suffix. So, using the Flat _archive
Mode example above, the table name would be , and it would have the same construction as .my_source_table_archive my_source_table

https://spaces.at.internet2.edu/display/COmanage/cm_org_identities
https://spaces.at.internet2.edu/display/COmanage/cm_names
https://spaces.at.internet2.edu/display/COmanage/cm_addresses
https://spaces.at.internet2.edu/display/COmanage/cm_email_addresses
https://spaces.at.internet2.edu/display/COmanage/cm_identifiers
https://spaces.at.internet2.edu/display/COmanage/cm_telephone_numbers
https://spaces.at.internet2.edu/display/COmanage/cm_urls
https://spaces.at.internet2.edu/display/COmanage/cm_ad_hoc_attributes
https://spaces.at.internet2.edu/display/COmanage/Organizational+Identity+Sources#OrganizationalIdentitySources-OrganizationalIdentitySources-SyncModes

1.
2.
3.

Archive Tables are also supported in Relational Mode, each table must have a corresponding archive version (eg: , my_source_table_names_archive
etc).

Archive Tables will automatically be used if detected, the Source Table (or primary Source Table for Relational Mode) has a column, in unless modified
which case the modified timestamp approach will be used instead.

Because of the structure of the current implementation of the Org Identity Source sync infrastructure, the Archive Tables are only updated after a
successful Sync run. If a Sync run fails to complete for some reason, there may be some records that were actually processed but are not reflected in the
Archive Table. These records will be reprocessed at the next run, but should not result in any changes, and the Archive Table will eventually update.
Similarly, manually (re)processing a single record will not update the Archive Table, but again at the next Sync run they will be reprocessed (resulting in no
changes) and the Archive Table eventually updated.

Bootstrapping Archive Tables

When Archive Tables are added to an already operational instance of SqlSource, the tables must be bootstrapped with the current records from the
Source Tables. The easiest way to do this is to ensure that no changes are being made to the Source Tables (and that the current values in the Source
Tables have been processed) and then creating the Archive Tables from the Source Tables, eg:

SQL> CREATE TABLE my_source_table_archive as SELECT * FROM my_source_table;

Make sure the ownership of the newly created tables is correct.

For a new SqlSource instance that has not yet had any records processed and that will be run in Full mode, bootstrapping is not required.

Debugging

Table Not Found In Datasource

If the specified table is not in fact in the database, the error message "Table my_source_table for model SourceRecord was not found in datasource
sourcedb." probably means the ownership or permissions on the Source Tables are incorrect, and Registry is unable to query them. (The actual database
issued permission error is masked by Cake, but may be visible in the database error logs.)

Archive Tables Appear To Be Ignored

Check that

The Source Table has a column (in which case that is used instead)modified
The ownership or permissions on the Archive Tables is correct (otherwise Registry is unable to query or update them)
If there is already data in the Source Tables that has been processed, that the Archive Tables have been bootstrapped.

Note that manually running individual records (eg: as a test) will populate the Archive Tables.not

See Also
cm_sql_sources
SQL Provisioning Plugin

Archive Table functionality is implemented using statements, which require full table scans in order to perform comparisons. As such, EXCEPT
use of Modified Timestamps as described above are likely to be faster in many circumstances, and should generally be considered preferred
when available.

For more information on , see the database specific documentation:EXCEPT

Postgres Set Operations
MySQL EXCEPT (supported since v8.0.31)
MariaDB EXCEPT (supported since v10.3)

https://spaces.at.internet2.edu/display/COmanage/cm_sql_sources
https://spaces.at.internet2.edu/display/COmanage/SQL+Provisioning+Plugin
https://www.postgresql.org/docs/current/queries-union.html
https://dev.mysql.com/doc/refman/8.0/en/except.html
https://mariadb.com/kb/en/except/

	SQL Source

