
1.
a.
b.

2.
3.

1.

Registry PE Coding Guide

Background
Prerequisites
PHP 8

PSR Coding Style
Variations
Differences From The COmanage Coding Style
Automating PSR-12 Compliance

Adding New Models
Data Model and Functional Design

schema.json
Application Rules
Transmogrification
Logging
Testing
Documentation

Leveraging DRY Patterns
API Controllers
Authorization (RegistryAuth Component)
Behaviors

Changelog Behavior
Log Behavior

Callbacks
Enumerations
Function Parameters and Signatures
Localizations
Non-Standard Foreign Key Relations
Ordering
Timezones
Traits

AutoViewVars Trait
History Trait
PrimaryLink Trait

Redirect Goals
Declaring Primary Links to Plugins

Models / Tables
Accessing Models / Tables
Determining the Current CO
Joins
Validation and Application Rules

Views
columns.inc

Appending a Custom String
fields.inc and FieldHelper
Custom Display Fields

Background
This document is intended to provide guidance to anyone writing code against COmanage Registry PE (v5.0.0 or later), including plugin developers. It
describes various facilities developed for COmanage specifically, to help make it easier to write .DRY code

Prerequisites

Before continuing, be sure to be familiar with the following:

PHP, and in particular newer PHP features such as
Traits
Named Arguments

CakePHP v4 and the MVC design pattern
The Registry Data Model (and the Technical Manual in general)

PHP 8

Registry PE is targeting PHP 8+. In particular:

Function calls should be typed, including the return type.

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://www.php.net/manual/en/language.oop5.traits.php
https://www.php.net/manual/en/functions.arguments.php#functions.named-arguments
https://book.cakephp.org/4
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

1.

2.

3.
4.

1.

2.
3.
4.
5.

PSR Coding Style
Registry PE generally adopts , with some variations. Where discrepancies exist between this section and the rest of this document, this section PSR-12
controls and the conflict should be assumed to be a legacy artifact that has not been updated.

In general, should also be followed, except where they conflict with guidance in this document.CakePHP Coding Conventions

Variations

Indent 2 spaces rather than 4. This is a change to PSR-12 §2.4. Indenting 4 spaces makes code sprawl horizontally, making it harder to read
and more difficult to keep to 80 characters per line (PSR-12 §2.3).
Empty lines should have white space aligned to the start of the preceding line. This makes it easier to visually align blocks of code without
have the cursor jump all over the place. This is technically a change to PSR-12 §2.3.
Ignore CakePHP guidance on Line Length. PSR-12 §2.3 controls (line length target of 80 characters, soft limit of 120 characters, no hard limit).
Ignore CakePHP guidance on nested ternaries. Nested Ternary Operations are permitted with concise, and can be written more clearly than
the equivalent if/then/if/then/else clause.

Differences From The COmanage Coding Style

For developers already familiar with the v4 and earlier coding style, this section highlights the changes:

Method names MUST be declared in camelCase (PSR-1 §4.3). While this was already generally the case, there are some places that used
under_score style names.
Use short form of type keywords (PSR-12 §2.5). There was not previously a standard, so (eg) and were used interchangeable.int integer
Opening braces for function definitions start on a new line (PSR-12 §4.4).
Multi-line function arguments are each placed on their own line (PSR-12 §4.5).
Spacing for if/then/else (PSR-12 §5.1), (§5.3), (§5.4), (§5.5), (§5.6). A space is now always inserted after a while for foreach and try/catch
keyword, and alignment for expressions split across multiple lines has changed.

Automating PSR-12 Compliance

XXX PHP_CodeSniffer

Adding New Models

Data Model and Functional Design

Before writing any code, start by proposing changes to the existing data model (which may include defining new tables that will map to the new models
added to the application). Build a proposed functional design around the data model changes. For code that will be contributed to the project, review these
designs with the development group before beginning any meaningful coding, since code that does not align with the project's direction will not be
accepted.

schema.json

Schema management is handled by , using a Registry specific JSON schema file processed by . The format of the Doctrine DBAL DatabaseCommand
schema file is fairly self documenting, but note the following:

The provides default definitions for commonly used attributes. These defaults will be used when the table defines a column columnLibrary
name with the same name as the library definition. All library values are inherited by default, it is then only necessary to explicitly define the ones
that should be changed.
Index names must be explicitly specified (as opposed to autogenerated) so that if the index definition changes DBAL can recompute the index.
(This is much more efficient than the previous ADOdb based system, which rebuilt all indexes on the table any time the table was changed in any
way.)

In general, do not define unique constraints on indexes, as they will conflict with Changelog Behavior. Uniqueness can be enforced using
Application
Rules.

Cake's fields will be automatically inserted, unless is set to false in the table definition.Timestamp timestamps
Fields for will be automatically inserted, unless is set to false in the table definition.Changelog Behavior changelog
For attributes that can be created via , setting to true will insert the necessary foreign key and index.Registry Pipelines sourced
For Multi-Valued Entity Attributes (MVEAs), setting to a list of parent tables will insert the necessary foreign keys and indexes.mvea

Note that since JSON files inexplicably can't have comments, the key is reserved in all contexts except the list of column definitions to be used comment
for comments.

Application Rules

"Implicit logic" must be documented in the form of .Application Rules

https://www.php-fig.org/psr/psr-12/
https://book.cakephp.org/4/en/contributing/cakephp-coding-conventions.html
https://spaces.at.internet2.edu/display/COmanage/COmanage+Coding+Style
https://www.doctrine-project.org/projects/doctrine-dbal/en/latest/index.html
https://book.cakephp.org/4/en/orm/behaviors/timestamp.html
https://spaces.at.internet2.edu/display/COmanage/Changelog+Behavior
https://spaces.at.internet2.edu/display/COmanage/Registry+Pipelines
https://spaces.at.internet2.edu/display/COmanage/Registry+Application+Rules

1.

2.

Application Rules are typically enforced using , which are applied to a table using the table's function. By Cake's Application Rules buildRules()
convention, COmanage rules are named , and are defined in the table they apply to. Rules common to multiple tables should ruleSomethingOrOther()
be implemented in . Global rules that apply to all tables are implemented in the .RulesTrait RuleBuilderEventListener

Application Rules must be labeled in a comment adjacent to the code that enforces them using the form , that is the string "AR-", the camel AR-Model-#
cased singular model name, a dash, and the number of the rule for that model (for example:). Global rules are referred to as AR-ApiUser-3 General

, and are labeled .Model Rules AR-GMR-#

Wherever possible, log entries (to the level) should be generated when an Application Rule is applied.rules

In general, Application Rules are not configurable.

Transmogrification

For migration of Registry tables from v4 to v5, appropriate support for migrating existing data must be added to .TransmogrificationCommand

Each table must be added to in the same order as (ie: to correctly sequence the population of primary keys). By default, fields $tables schema.json
are mapped 1-1 unless configured via . (The is used when Transmogrification is running.)fieldMap displayField

In some cases, a custom mapping function is required to calculate the target table value. In some of these cases, results from an earlier table should be
cached so later mapping actions can quickly find earlier values. This is accomplished with the entry.cache

If a table was not previously Changelog enabled but is Changelog enabled in v5, the key must be set to .addChangelog true

Boolean fields must currently be explicitly identified in the entry.booleans

Logging

XXX

Testing

XXX

Documentation

Application Rules must be documented as described above.
Functional documentation should be added to the Technical Manual.
The must be updated.Data Model
The documentation must be updated, if needed.REST API

Leveraging DRY Patterns
Registry builds various utilities on top of the Cake framework.

API Controllers

Unlike in v4 and earlier, API transactions are handled entirely by dedicated controllers. The standard Registry model level API is implemented by ApiV2Co
, other APIs are implemented in plugins. As a result, controller specific logic (such as overriding) to ntroller beforeFilter will not automatically apply

APIs. Model specific logic that needs to apply to both the UI and API should be defined in the model (table) through the use of Traits or other similar
techniques, and then referenced generically from the calling controllers.

Authorization (RegistryAuth Component)

XXX

Behaviors

Changelog Behavior

In general, the previous documentation on applies, though not all features are implemented yet.Changelog Behavior

Because ChangelogBehavior intercepts requests and converts them to updates, and callbacks should delete beforeDelete afterDelete
not be used.
Tables using ChangelogBehavior should use .ChangelogBehaviorTrait

https://book.cakephp.org/4/en/orm/validation.html#applying-application-rules
https://spaces.at.internet2.edu/display/COmanage/Registry+Application+Rules
https://spaces.at.internet2.edu/display/COmanage/Registry+PE+Data+Model
https://spaces.at.internet2.edu/display/COmanage/REST+API+v2
https://spaces.at.internet2.edu/display/COmanage/Changelog+Behavior

1.

2.

1.
2.

Log Behavior

XXX

Callbacks

Because ChangelogBehavior intercepts requests and converts them to updates, and callbacks should delete beforeDelete afterDelete
not be used.
Tables using ChangelogBehavior should use , which implements . As such, Tables should not ChangelogBehaviorTrait afterSave
implement their own , but should implement (with the same function signature as). afterSave localAfterSave afterSave localAfterSave
will not be called when archived records are written to the database.

Enumerations

XXX

Function Parameters and Signatures

When defining functions, use parameter type, return types, and default values. When the ID of the current Model is a parameter, it should be first in the list.

public myFunction(int $id, string $label, bool $colorful=false): string { ... }

When calling functions, use parameter names wherever possible.

$s = $this->myFunction(id: $entity->id, label: __d('information', 'my.label'), colorful: true);

Avoid the use of configuration arrays (though Cake still makes heavy use of these).

public badExample($id, $options=[]);

Localizations

When localizing text strings, use the table name and/or field name as is whenever possible.

Non-Standard Foreign Key Relations

Normally, a relation can simply be defined using something like

$this->belongsTo('Types')

which implies the current table has a columns . However, sometimes it is necessary or desirable to use a different foreign key name, such as type_id def
. This can be accomplished with something likeault_type_id

$this->belongsTo('Types')->setForeignKey('default_type_id');

Registry's foreign key checks further require a property to be set so that can properly validate foreign keys at run time. This can be ruleValidateCO
accomplished by setting a property with the name of the foreign key without the :_id

$this->belongsTo('Type')->setForeignKey('default_type_id')->setProperty('default_type');

Ordering

Many models can be ordered, eg Provisioning Targets. In order to leverage common utility code:

The relevant table definition should include the field , spelled with out the "e". (This is because is a reserved keyword in MySQL.)ordr order
The Table should use , which will automatically set an appropriate value for if none is provided when a new entity is OrderableBehavior ordr
saved.

2.

a. OrderableBehavior will constrain searches by primary key when assigning the next value. So, for example, when a new ordr
Provisioning Target is added, is determined for all Provisioning Targets within the same CO, while for Enrollment Flow max(ordr)
Steps is determined for all Enrollment Flow Steps within the same Enrollment Flow.max(ordr)

Timezones

All timestamps are stored in the database in UTC ().AR-GMR-4

To automatically convert to UTC on save, the table should load . will convert from UTC on rendering, TimezoneBehavior FieldHelper::control()
as will the Standard when sets the field type to .index.php columns.inc datetime

There is no timezone conversion for the REST API.

See also: Registry Timezones

Traits

Common code used to be placed in , which led to a large and complicated pile of code. In general, common functionality is now implemented AppModel
using traits.

AutoViewVars Trait

XXX

History Trait

Models should record History at appropriate points to facilitate administrator review of actions affecting a Person record. offers utility HistoryTrait
functions to simplify recording history. It is also possible to use directly, though it may be more complicated to do so.HistoryRecordsTable

PrimaryLink Trait

The of a table is the foreign key to the most significant parent object, typically or . The Primary Link is used to Primary Link co_id person_id
automatically determine permissions, generate links, and other similar purposes.

Redirect Goals

After adding or editing an entity, different models may have different user experiences for where to go next. The selection of a redirect target can be
controlled by setting a . Currently supported Redirect Goals areRedirect Goal

index: Redirect to the index for the model, filtered by the Primary Link
primaryLink: Redirect to the Primary Link entity
self: Re-render the same form

Declaring Primary Links to Plugins

Primary Links can be declared to Plugin models (for example, the a Plugin defines secondary models to a Primary Plugin model) using the notation Plugin
. Note that this is the and not the Entry Point Model. The foreign key ID will be inflected to get the Model name. .foreign_key_id physical plugin name

For example, will declare the primary link to be to $this->setPrimaryLink('CoreAssigner.format_assigner_id'); CoreAssigner.
.FormatAssigners::id

Models / Tables

Accessing Models / Tables

Cake supports two main ways for referencing another model (table) from within a model (table) or controller. The first is via the model relation:

Model Relations

// eg, in GroupMembersTable.php:
$person = $this->People->get($entity->person_id);

The second is via . The TableLocator is directly available in a controller, or can be accessed using the it a the classTableLocator LocatorAwareTrait
Model.

TableLocator

https://spaces.at.internet2.edu/display/COmanage/Registry+Application+Rules
https://spaces.at.internet2.edu/display/COmanage/Registry+Timezones
https://book.cakephp.org/4/en/orm/table-objects.html#table-locator-usage

// In a controller
$People = $this->getTableLocator()->get('People');

// In a model
class MyTable extends Table {
 use \Cake\ORM\Locator\LocatorAwareTrait;

 public function doSomething() {
 $People = $this->getTableLocator()->get("People");
 }
}

In general, either approach is acceptable. The first approach is usually simpler and more compact, however when a long chain of relations is required to
get to the desired table, the second approach may be preferable. When there is no directly relation, the second approach is required.

Determining the Current CO

In general, model code should obtain the current CO via parameters passed to the functions it implements, either directly (when there is no other
parameter that implies a CO) or indirectly (when another parameter, such as , can be used to calculate the CO). The function $personId findCoForReco

 (implemented in) can be helpful.rd PrimaryLinkTrait

In rare cases, it may be necessary to determine the CO by other means, for example in order to adjust validation rules based on the current CO. Models
can on their table (again via), and will then provide the CO to the table as part of . Note setAcceptsCoId PrimaryLinkTrait AppController setCO
this currently works only for the primary table of the request and its immediate relations.

Joins

In general, avoid using joins unless required for performance reasons. Joins make the code harder to read, require special annotations, may interact
poorly with ChangelogBehavior, and require when the database configuration has enabled (which is required for special handling quoteIdentifiers
MySQL).

Validation and Application Rules

XXX

Views

columns.inc

Appending a Custom String

It is possible to append a custom string (such as "Primary Link") to a field in the index view on a per-record basis using the directive. The value is append
a function implemented on the entity. For example,

templates/Names/columns.inc

$indexColumns = [
 'type_id' => [
 'type' => 'fk',
 'append' => 'primaryLabel'
]
]

when rendering the field for the index of , will be called and the returned string will be appended with a type names $nameprimaryLink(): string
comma to the string for the current value of the type foreign key. The result will be something like " ".Official, Primary Name

fields.inc and FieldHelper

XXX

Custom Display Fields

By default, the display field used for a model is whatever is set using Cake's . However, tables can implement model-specific display setDisplayField
logic by implementing .generateDisplayField($entity): string

https://book.cakephp.org/4/en/orm/query-builder.html#adding-joins

	Registry PE Coding Guide

