
Grouper container running on OpenShift

Wiki
Home

Grouper Release
Announcements

Grouper
Guides

Grouper Deployment
Guide

Community
Contributions

Internal Developer
Resources

The major obstacle to getting the Grouper docker container to run in the environment is that the process user runs as a userid with few OpenShift
permissions, and which isn't known at build time. This means that the Grouper container processes that normally run as either tomcat or root must be
runnable under this low-permission context. These issues can be solved by building a derived container that includes a combination of file permission
changes plus minor changes to the library scripts in /usr/local/bin. Since version 2.5.40, file permissions in the Grouper container have been adjusted to
better support OpenShift out of the box. In addition, this version adds a new environment variable GROUPER_OPENSHIFT, which triggers the setting of
other variables needed in OpenShift – GROUPER_CHOWN_DIRS=false, GROUPER_USE_PIPES=false, GROUPER_GSH_CHECK_USER=false, and
GROUPER_RUN_PROCESSES_AS_USERS=false.

One trait of the OpenShift container (and) is that if a user does not have a primary group, it will run with the group. This Docker containers in general root
can help in the early stages of development. By building an image from a Dockerfile including a statement, you can start it up locally USER <random id>
as a simple Docker image and look for errors, without needing to do frequent OpenShift deployments.

In OpenShift, the Grouper UI or WS only needs to run Tomcat as its only process, on port 8080. Shibboleth can be run as a separate sidecar container,
proxying both the login and SSL.

Configuration (since 2.5.40)

For configuration, it works well to set (a) properties that vary between environments in database configuration (Miscellaneous > Configuration in the UI); (b)
properties the same in all environments as either property files in the subimage, or in the database; (c) the minimal set of properties needed for startup as
environment secrets; and (d) properties specific to OpenShift as normal deployment env variables. Although secrets could be bind mounted in /run/secrets
/grouper_* files, the ease of secret setup in OpenShift makes the setup in (c) preferred. Minimally, the morphString key and the database password are the
only two properties that need to be set up this way. However, it may simplify maintenance if the database url and username are also included, since they
are likely to be maintained at the same time.

opaque secret: grouper_env_prod

GROUPER_MORPHSTRING_ENCRYPT_KEY: *****
GROUPER_DATABASE_URL: *****
GROUPER_DATABASE_USERNAME: *****
GROUPER_DATABASE_PASSWORD: *****

Create an opaque secret with these values in it, and then add it to the deployment configuration as Environment from Secret.

Other environment variables necessary or optional for OpenShift are:

TZ: America/New_York (set to local time zone, otherwise the container may default to UTC)
GROUPER_OPENSHIFT: true (if you only want to run your image in OpenShift you can add to the Dockerfile, but if not add, it can be inserted
here)
GROUPER_RUN_TOMCAT_NOT_SUPERVISOR: true (this should be added as part of the GROUPER_OPENSHIFT switches in a future
version)
GC_MAX_METASPACE_SIZE: 256 (helps with startup memory)
GROUPER_MAX_MEMORY: 1792m (the default is 1500m which actually may be enough; the critical factor in JVM heap sizing is that the
container's memory seems to need at least 700M to avoid out of memory crashes at the OS level; in our case the container limit was 2560Mi, and
a value of 1792m gave sufficient spare memory to the OS to prevent crashes)
JVM_OPTS: -XX:+UnlockExperimentalVMOptions -XX:+UseCGroupMemoryLimitForHeap -XX:MaxRAMFraction=1 -Xms64M (the extra options
are supposed to help the JVM have awareness of the actual VM memory it can use)

The startup command in theory should just be "ui" or "ws". But OpenShift doesn't pick up the entrypoint value of "entrypoint.sh" in the Grouper standard
image for some reason, so it needs to be included. Thus, the startup command would be "/usr/local/bin/entrypoint.sh ui". If your OpenShift UI doesn't have
a place to configure the start command, it can be added by editing the deployment config yaml:

spec:
 template:
 spec:
 containers:
 - args:
 - ui
 command:
 - /usr/local/bin/entrypoint.sh

https://spaces.at.internet2.edu/display/Grouper/Grouper+Wiki+Home
https://spaces.at.internet2.edu/display/Grouper/Grouper+Wiki+Home
https://spaces.at.internet2.edu/display/Grouper/Grouper+Release+Announcements
https://spaces.at.internet2.edu/display/Grouper/Grouper+Release+Announcements
https://spaces.at.internet2.edu/display/Grouper/Grouper+Administration+Guides
https://spaces.at.internet2.edu/display/Grouper/Grouper+Administration+Guides
https://spaces.at.internet2.edu/display/Grouper/Grouper+Deployment+Guide
https://spaces.at.internet2.edu/display/Grouper/Grouper+Deployment+Guide
https://spaces.at.internet2.edu/display/Grouper/Community+Contributions
https://spaces.at.internet2.edu/display/Grouper/Community+Contributions
https://spaces.at.internet2.edu/display/GrIntDev/Grouper+Internal+Development+Home
https://spaces.at.internet2.edu/display/GrIntDev/Grouper+Internal+Development+Home
https://www.openshift.com/
https://docs.docker.com/engine/reference/builder/#user

The readiness check can utilize the diagnostic status page. This can be useful not only to detect pod availability, but also helps in WS to force a preload of
object data to speed up the first external call. I could not get the "HTTP GET" health check to work. But a curl command also works:

spec:
 template:
 spec:
 containers:
 - ...
 readinessProbe:
 exec:
 command:
 - /bin/bash
 - '-c'
 - curl --fail http://$(cat /etc/hostname):8080/grouper/status?diagnosticType=sources

Sample Dockerfile:

FROM i2incommon/grouper:2.5.42

5005 is for JVM debugger
EXPOSE 8080 5005

Copy in customizations as needed
COPY files/etc/ /etc/
COPY files/grouperWebapp/ /opt/grouper/grouperWebapp/

TEMPFIX: Grouper issue
#grouperContainer; INFO: (librarySetupFilesTomcat.sh-setupFilesTomcat_loggingSlf4j) rm -f /opt/grouper
/grouperWebapp/WEB-INF/lib/slf4j-jdk*.jar , result: 1
RUN cd /opt/grouper/grouperWebapp/WEB-INF/ && chgrp 0 lib lib/slf4j-jdk14-1.7.21.jar && chmod g+rws ./lib &&
chmod g+rw ./lib/slf4j-jdk14-1.7.21.jar

TEMPFIX: Grouper UI startup issue
#java.lang.RuntimeException: Cant make dir: /opt/grouper/grouperWebapp/WEB-INF/ddlScripts
RUN cd /opt/grouper/grouperWebapp/WEB-INF && mkdir ddlScripts && chgrp 0 ddlScripts && chmod g+rws ddlScripts

TEMPFIX: Grouper gsh issue with unwritable WEB-INF/.groovy (defaults to current directory if user has no home
directory?)
RUN chgrp 0 /opt/grouper/grouperWebapp/WEB-INF && chmod g+ws /opt/grouper/grouperWebapp/WEB-INF

Schema of

Changes to startup scripts (prior to 2.5.40)

The following changes to the Grouper library scripts in /usr/local/bin fix some issues with temporary files, running as a non-owner, and the non-existent rm
userid. Until the changes are made to the base Grouper container, they should be copied from the Grouper container , patched locally, and then Git project
included in the new Docker build.

container_files/usr-local-bin/gsh

Note that when building an image from a Dockerfile, it will inspect the code, see that its base image is i2incommon/grouper, and create an
image in the registry for the specified version. Once the buildConfig has been created with the base image, subsequent builds will ignore the
FROM version in the Dockerfile even if it changes, preferring the one set up in the buildConfig. Thus, when upgrading versions of Grouper, both
the FROM base image in the Dockerfile, and the base image defined in the buildConfig need to be modified.

https://github.internet2.edu/docker/grouper

@@ -7,13 +7,10 @@ runCommand_unsetAll

 export GSH_JVMARGS="$GSH_JVMARGS -DENV=$ENV -DUSERTOKEN=$USERTOKEN"

-username=$(whoami)

-if ["$GROUPER_GSH_CHECK_USER" = "true"] && ["$GROUPER_GSH_USER" != "$username"]
+if ["$GROUPER_GSH_CHECK_USER" = "true"] && ["$GROUPER_GSH_USER" != "$(whoami)"]
 then
 sudo -u tomcat bin/gsh.sh "$@" | tee /tmp/loggrouper
 else
 exec bin/gsh.sh "$@" | tee /tmp/loggrouper

container_files/usr-local-bin/library.sh

@@ -1,10 +1,13 @@
 #!/bin/bash

+# Run dos2unix; use temp files in case running as unprivileged user
 echo "grouperContainer; INFO: (library.sh) Start loading library.sh"
-dos2unix /usr/local/bin/library*.sh
-echo "grouperContainer; INFO: (library.sh) dos2unix /usr/local/bin/library*.sh , result=$?"
-dos2unix /usr/local/bin/grouper*.sh
-echo "grouperContainer; INFO: (library.sh) dos2unix /usr/local/bin/grouper*.sh , result=$?"
+for f in /usr/local/bin/library*.sh /usr/local/bin/grouper*.sh; do
+ TFILE=$(mktemp) && dos2unix -q -n $f $TFILE && cat $TFILE > $f
+ echo "grouperContainer; INFO: (library.sh) dos2unix $f, result=$?"
+ rm $TFILE
+done
+

 . /usr/local/bin/libraryPrep.sh
 . /usr/local/bin/libraryPrepOnly.sh

container_files/usr-local-bin/librarySetupFiles.sh

@@ -64,7 +64,11 @@ setupFiles_storeEnvVars() {
 # go through env vars, should start with GROUPER and have an equals sign in there
 env | grep "^GROUPER" | grep "=" | sort >> /opt/grouper/grouperEnv.sh

- sed -i "s|^GROUPER|export GROUPER|g" /opt/grouper/grouperEnv.sh
+ # use sed with an intermediate temp file, in case running as n unprivileged user
+ TFILE=$(mktemp) \
+ && sed "s|^GROUPER|export GROUPER|g" /opt/grouper/grouperEnv.sh > $TFILE \
+ && cat $TFILE > /opt/grouper/grouperEnv.sh
+ rm $TFILE

 if [! -f /home/tomcat/.bashrc]
 then

container_files/usr-local-bin/librarySetupFilesForProcess.sh

@@ -14,8 +14,8 @@ setupFilesForProcess_hsqldb() {
 setupFilesForProcess_hsqldbVersions() {

 # tomee hsql must match the grouper one, and the version cannot be 2.3.2 since it is query bugs (unit
tests fail)
- rm /opt/tomee/lib/hsqldb-*.jar
- echo "grouperContainer; INFO: (librarySetupFilesForProcess.sh-setupFilesForProcess_hsqldbVersions) rm /opt
/tomee/lib/hsqldb-*.jar , result: $?"
+ rm -f /opt/tomee/lib/hsqldb-*.jar
+ echo "grouperContainer; INFO: (librarySetupFilesForProcess.sh-setupFilesForProcess_hsqldbVersions) rm -f
/opt/tomee/lib/hsqldb-*.jar , result: $?"
 cp /opt/grouper/grouperWebapp/WEB-INF/lib/hsqldb-*.jar /opt/tomee/lib/
 echo "grouperContainer; INFO: (librarySetupFilesForProcess.sh-setupFilesForProcess_hsqldbVersions) cp /opt
/grouper/grouperWebapp/WEB-INF/lib/hsqldb-*.jar /opt/tomee/lib/ , result: $?"

container_files/usr-local-bin/librarySetupFilesTomcat.sh

@@ -142,18 +142,18 @@ setupFilesTomcat_authn() {

 setupFilesTomcat_loggingSlf4j() {

- rm /opt/tomee/lib/slf4j-api*.jar
- echo "grouperContainer; INFO: (librarySetupFilesTomcat.sh-setupFilesTomcat_loggingSlf4j) rm /opt/tomee/lib
/slf4j-api*.jar , result: $?"
- rm /opt/tomee/lib/slf4j-jdk*.jar
- echo "grouperContainer; INFO: (librarySetupFilesTomcat.sh-setupFilesTomcat_loggingSlf4j) rm /opt/tomee/lib
/slf4j-jdk*.jar , result: $?"
+ rm -f /opt/tomee/lib/slf4j-api*.jar
+ echo "grouperContainer; INFO: (librarySetupFilesTomcat.sh-setupFilesTomcat_loggingSlf4j) rm -f /opt/tomee/lib
/slf4j-api*.jar , result: $?"
+ rm -f /opt/tomee/lib/slf4j-jdk*.jar
+ echo "grouperContainer; INFO: (librarySetupFilesTomcat.sh-setupFilesTomcat_loggingSlf4j) rm -f /opt/tomee/lib
/slf4j-jdk*.jar , result: $?"
 cp /opt/grouper/grouperWebapp/WEB-INF/lib/slf4j-api-*.jar /opt/tomee/lib
 echo "grouperContainer; INFO: (librarySetupFilesTomcat.sh-setupFilesTomcat_loggingSlf4j) cp /opt/grouper
/grouperWebapp/WEB-INF/lib/slf4j-api-*.jar /opt/tomee/lib , result: $?"
 # tomee uses the jdk one
 cp /opt/grouper/grouperWebapp/WEB-INF/lib/slf4j-jdk*.jar /opt/tomee/lib
 echo "grouperContainer; INFO: (librarySetupFilesTomcat.sh-setupFilesTomcat_loggingSlf4j) cp /opt/grouper
/grouperWebapp/WEB-INF/lib/slf4j-jdk*.jar /opt/tomee/lib , result: $?"
 # grouper uses the log4j one
- rm /opt/grouper/grouperWebapp/WEB-INF/lib/slf4j-jdk*.jar
- echo "grouperContainer; INFO: (librarySetupFilesTomcat.sh-setupFilesTomcat_loggingSlf4j) rm /opt/grouper
/grouperWebapp/WEB-INF/lib/slf4j-jdk*.jar , result: $?"
+ rm -f /opt/grouper/grouperWebapp/WEB-INF/lib/slf4j-jdk*.jar
+ echo "grouperContainer; INFO: (librarySetupFilesTomcat.sh-setupFilesTomcat_loggingSlf4j) rm -f /opt/grouper
/grouperWebapp/WEB-INF/lib/slf4j-jdk*.jar , result: $?"

 }

Dockerfile (prior to 2.5.40)

The Docker subimage includes some extra environment variables, imports the modified library scripts, and sets the extra file permissions needed to do file
preparation and run the TomEE process. Note that this also includes a USER directive to set the user to an invalid userid. This is for quick testing in the
local environment, and should be removed when building the image in OpenShift.

FROM i2incommon/grouper:2.5.39

ENV GROUPER_CHOWN_DIRS=false

ENV GROUPER_SHIB_LOG_USE_PIPE=false

ENV GROUPER_GSH_CHECK_USER=false

EXPOSE 8080

COPY files/container_files/usr-local-bin/ /usr/local/bin/

RUN touch /opt/grouper/grouperEnv.sh && chgrp root /opt/grouper/grouperEnv.sh \
 && chmod g+rwx /opt/grouper/grouperEnv.sh /etc/httpd/conf/httpd.conf && chgrp root /opt/grouper/grouperEnv.
sh /etc/httpd/conf/httpd.conf \
 && chmod g+rx /home/tomcat/ && chgrp root /home/tomcat/ \
 && chmod g+rw /home/tomcat/.bashrc /opt/tomee/conf/server.xml && chgrp root /home/tomcat/.bashrc /opt/tomee
/conf/server.xml \
 && for d in /usr/local/bin \
 /etc/httpd/conf/ \
 /etc/httpd/conf.d/ \
 /opt/hsqldb/ \
 /opt/tomee/lib/ \
 /opt/tomee/conf/ \
 /opt/grouper/grouperWebapp/WEB-INF/lib/ \
 /opt/tomee/conf/Catalina/localhost/ \
 /opt/tier-support/ \
 /opt/grouper/grouperWebapp/WEB-INF/ \
 /opt/grouper/grouperWebapp/WEB-INF/classes/; do chmod g+rwx $d; chgrp root $d; done \
 && for d in /opt/tomee/webapps/ /opt/tomee/temp/ /opt/tomee/work/Catalina/localhost/; do mkdir -p $d &&
chgrp root $d && chmod g+rws $d; done

To simulate what would happen when the OpenShift container starts, uncomment this, build, then run locally
#USER 123456

Running a container

Besides the environment variables baked into the image, there are also some additional variables that are better left to the Docker run command, since
they differ depending on which Grouper component is run. The , , etc. commands that are normally used to start a container can't be used, because ui ws
they add additional environment variables that force Apache and Shibboleth to be run as services, which we don't need in OpenShift.

UI (leave out in container run command): ui

GROUPER_UI=true
GROUPER_RUN_TOMEE=true
GROUPER_RUN_PROCESSES_AS_USERS=false

WS (leave out for container): ws

GROUPER_WS=true
GROUPER_RUN_TOMEE=true
GROUPER_RUN_PROCESSES_AS_USERS=false
GROUPER_TOMCAT_CONTEXT=grouper-ws

Daemon (use to invoke) daemon

GROUPER_DAEMON=true
GROUPER_RUN_TOMEE=true
GROUPER_RUN_PROCESSES_AS_USERS=false

gsh (use to invoke) gsh

GROUPER_RUN_PROCESSES_AS_USERS=false

UI + WS: Because this is running only TomEE without Apache, there is only one context ("grouper", or defined by GROUPER_TOMCAT_CONTEXT)
running. Thus, both the UI and WS will be accessed under the single context. If you need the UI running under /groupre and WS running under grouper-
ws, further modifications (as a future exercise) would be needed.

	Grouper container running on OpenShift

