
1.
a.
b.

2.
3.

a.
i.

b.
4.

a.
i.

1.
2.

3.

4.

5.

ii.

1.
2.
3.
4.

b.

Job Plugins
See also:

Writing Registry Plugins
Iterating Large Datasets
Registry Jobs

Some additional conventions are required when writing a Job Plugin.

The name of the Plugin should match the format .FooJob
For Registry v3.3.x, the prefix (eg:) will be used as the in .Foo job_type cm_co_jobs

 As of Registry v4.0.0, Job Plugins are no longer required to follow the naming convention for the Plugin itself. This enables FooJob
polymorphic Plugins. ie: Other types of Plugins can also implement Jobs.

For Registry v3.3.x, the Plugin must implement a single model FooJob (in), where matches the name of the Plugin.Model/FooJob.php Foo
For Registry v4.0.0 and later, the Plugin may implement multiple Job models, each of which follows the naming convention , where BarJob Bar
may be any string.

The main Plugin model (the model whose name matches the name of the Plugin) must implement an additional function:
getAvailableJobs(), which returns an array whose keys are the prefixes for each defined Job, and whose values are help strings
describing the Job. Prefixes should be in CamelCase (eg: CleanTable).

The in is the desired plugin Job model in Cake notation, but without the suffix, eg: .job_type cm_co_jobs Job FooJob.Bar
Each Job Model should extend , which defines some standard interfaces and provides some behind the scenes common CoJobBackend
functionality.

Each Model must implement two functions:
execute($coId, $CoJob, $params), which will be passed the relevant CO ID, a CoJob object, and an (optional) array of
parameters in accordance with the Plugin's configuration.

When the Job is started, it should call (with appropriate arguments).$CoJob->update()
When executing, the Job should not typically generate output, but should instead create Job History records. If it is
absolutely necessary to write to stdout, the Job should follow Cake's .Console output levels
If the Job loops over multiple records, it should check after each iteration, and $CoJob->canceled($jobid)
immediately terminate processing if the Job has been canceled.
Jobs may provide a "percent complete" value so that the job status view page will generate a progress bar. Simply call

 at appropriate points during processing.$CoJob->setPercentComplete($jobid, $percent)
When complete, the Job must call , with appropriate arguments. (The Job will be set to started $CoJob->finish()
when dispatched, before the Plugin is invoked.)

parameterFormat(), which returns an array of parameters supported by the plugin. Each entry in the array has a key of the
parameter name and a value of an array with the following keys:

choices: An array of permitted values for the parameter (when is)type select
help: Help text for the parameter
required: Boolean indicating whether or not this parameter is required
type: One of , , , or .bool int select string

As of Registry v4.0.0, sets . Jobs that use a table may need to this.CoJobBackend.php $useTable = false override

Job Plugins, including any code they call, should be careful not to trigger session creation, since sessions in a shell or cron context do not
necessarily make sense. If code is mixed use (ie: may also be called from the UI), be sure to check that the session has been created before
trying to read from it.

if(session_status() == PHP_SESSION_ACTIVE) {
 $foo = CakeSession::read('Foo.foo');
} else {
 // No session, in a shell command
 $foo = DEFAULT_VALUE;
}

https://spaces.at.internet2.edu/display/COmanage/Writing+Registry+Plugins
https://spaces.at.internet2.edu/display/COmanage/Iterating+Large+Datasets
https://spaces.at.internet2.edu/display/COmanage/Registry+Jobs
https://spaces.at.internet2.edu/display/COmanage/cm_co_jobs
https://spaces.at.internet2.edu/display/COmanage/cm_co_jobs
https://book.cakephp.org/2.0/en/console-and-shells.html#console-output-levels
https://book.cakephp.org/2/en/models/model-attributes.html#usetable

	Job Plugins

