
Deployment Instructions

Requirements
Downloads
Configuration Notes

Demo Environment
Docker Testbed

Deployment Options
Deployment via Docker
Deployment via embedded Tomcat mode
Deployment via external servlet container (Tomcat, Jetty et al)

Configure HTTPS
Authentication Options

Default - Single "root" user
Users Defined via File
Users Authenticated via Shibboleth IDP

Configuration Properties
Database Configuration via application.yaml
application.properties settings
Additional Configuration via YAML Properties

Attributes (for Attribute Release)
Defaults attributes

Relying Party Overrides
Default properties

Steps to integrate a SAML2 based IdP with ShibUI
Using Testbed Environment:
ShibUI Setup
Shibboleth IdP Setup

Suggested Setup Note
User Maintenance
TAP Beacon instrumentation

The SAML Metadata Configuration Manager (MCM) is built as a Java Spring Boot () application. It can be run as a https://spring.io/projects/spring-boot
standalone web application that has Tomcat embedded in it. The same WAR file can be deployed into an external servlet container (standalone Tomcat
etc). It can also be deployed using a Docker image. And in the Docker realm, the project also provides a full "testbed environment" that includes a
database, an IdP, a LDAP server, etc.

The MCM currently supports three distinct roles:

ROLE_ADMIN -- No limits, can do anything the MCM supports. Currently, Metadata Provider configuration (and filter configuration) requires ROL
accessE_ADMIN

ROLE_USER -- These users can only add individual metadata sources (single entityID SP metadata file), and modify metadata sources that they
created. And when creating a new SP entry, that SP metadata will not be active until after a user with approves it. ROLE_ADMIN
ROLE_ENABLE – These are "enhanced" ROLE_USER users that have the ability to SP metadata but cannot access/configure enable/publish
Metadata Provider (and filter) configurations

Requirements
The MCM requires a relational database for persistent storage. Out of the box you can run the application using an in memory database to get
familiar with the application but you will need a permanent data store in order to retain configurations
Java 11+ - the Docker version of the deployment includes the needed Java environment to run the application

Downloads
WAR releases available at: https://github.internet2.edu/TIER/shib-idp-ui/releases
Docker image available at: https://hub.docker.com/r/i2incommon/shib-idp-ui/tags

Configuration Notes
The following are some things that are useful to consider and know regardless of which deployment model you choose to go with.

Much of the behavior of the MCM can be set and controlled through properties files which can be in one or both of the following formats:

A Spring property file – a simple text file with a property name, equals sign, and the property value, one per line. This file is named: application.
properties
a YAML format file, named application.yml

The MCM comes with basic examples of both types of properties files.

https://spring.io/projects/spring-boot
https://github.internet2.edu/TIER/shib-idp-ui/releases
https://hub.docker.com/r/i2incommon/shib-idp-ui/tags

The example application.properties file includes the core settings for authentication, database connection information, users file, the directory/location
settings for where the MCM should write out the metadata files and metadata-providers.xml file it manages, etc.

The example application.yml file contains all the settings that impact the information, options, list elements, etc. that are actually shown in the UI.

There is no reason that you need to keep that distinction; you could manage everything through a single properties or YAML-format file if you wanted. On
the other hand, it can be a convenient distinction to keep the core "internal/baked-in settings" distinct from the "front-end/UI" settings. By default, property
sources named `application.properties` and `application.yml` will be recognized by Spring Boot and merged at runtime to form a finalized `Environment`
object holding all the properties gathered from all the property sources locations. Details on the properties that can/should be configured are detailed later
in this document.

Demo Environment

Docker Testbed

There are multiple "Testbed" environments that you can run that are available in the repository (in the testbed folder of the repository project). The
instances include various database setups as simple examples of how to quickly run the application configured for each database (Maria, Postgres, SQL
Server, MySQL).

There is also a fully integrated example in the testbed folder in the folder. It includes the:integration

SAML MCM
a Shibboleth IdP

with a shared filesystem between the MCM and Shibboleth IdP
an LDAP server as the base credential/attribute store for the IdP
a Postgres database image for the MCM's persistent database.

To setup the "Testbed", you will need to:

Create local DNS entries for idp.unicon.local and shibui.unicon.local pointing to 127.0.0.1. If you want to use other DNS names you can change
the Host in the docker-compose.yml, and traefik.http.routers.idp.rule traefik.http.routers.shibui.rule
Clone the repository:

$> git clone https://github.internet2.edu/TIER/shib-idp-ui.git

cd into shib-ui/testbed/integration
Run the following command:
docker compose up

Once Docker has completed the startup of all containers you can access the SAML MCM login screen with the following URL:

https://shibui.unicon.local

Default userid = root
Default password = letmein7

Deployment Options

Deployment via Docker

The Docker image of the SAML MCM follows the TIER Docker packaging standards, utilizing CentOS7, the Zulu JDK, supervisor, and the TIER Beacon
configuration.

Basic usage:

docker run -p 8080:8080 -v <your local application.properties>:/opt/shibui/application.properties i2incommon
/shib-idp-ui

You will want to create a local application.properties file that contains the core application settings you want overriding the defaults that are in the SAML
MCM war file. Your file should be mounted at the location /opt/shibui/application.properties.

The current set of supported properties can be found .here

Note: If you did not set an explicit password in your local application.properties then you will have to look at the startup "console messages" and find the
one generated at startup. Look for the line: . The username is: Using generated security password: user

http://internet2.edu

Deployment via embedded Tomcat mode

The SAML MCM war file includes an embedded Tomcat mode allowing you to run the application without any external dependencies beyond your
configuration overrides.

The following example shows how you can override the default database and use mariadb instead. Example application.yml(s) for configuring common
RDBMS can be found in the github .repository

shibui:
 default-password: "{noop}pass"
spring:
 datasource:
 platform: mysql
 driver-class-name: org.mariadb.jdbc.Driver
 url: jdbc:mariadb://localhost:3306/shibui
 username: shibui
 password: shibui
 jpa:
 properties:
 hibernate:
 dialect: org.hibernate.dialect.MariaDB103Dialect

Note: You need to list an "encryption scheme" for the default-password which is what the '{noop}' is preceding it. More info on the encryption scheme can
be found .here

Then you will run the war and tell Spring Boot where to find the externalized . application.yml

java -Xmx1g -jar shibui-1.18.0.war --spring.config.additional-location=file:/etc/shibboleth-ui/

You can then access the application on and login as root with the password you set in application.yml http://localhost:8080

Deployment via external servlet container (Tomcat, Jetty et al)

This section describes how to deploy Shibboleth UI application as web archive with external configuration sources which override default configuration
setting embedded in Shibboleth UI war to external Tomcat servlet container.

Shibboleth UI is a Spring Boot web application which supports all standard Spring Boot property sources and configuration options. So, let's assume that
our external configuration directory is `/etc/shibboleth-ui`. By default, property sources named `application.properties` and `application.yml` will be
recognized by Spring Boot and merged at runtime to form a finalized `Environment` object holding all the properties gathered from all the property sources
locations and then available to configure Shibboleth UI web application. All the standard Spring Boot property sources precedence rules apply here, but for
our purposes we need to know that Shibboleth UI war deployed to external servlet container, embeds the set of default configuration properties on runtime
classpath in `application.properties` file and then any standard property could be overridden by externalizing them in additional `application.properties` or
`application.yml` files. So, back to our example, let's assume we use `/etc/shibboleth-ui/application.yml` file to run our Shibboleth UI application and
connect to MariaDB RDBMS instead of a default embedded H2 database that is configured in `application.properties` embedded in shibui.war which would
be deployed to external servlet container. The sample `/etc/shibboleth-ui/application.yml` containing properties to connect to MariaDB instance would look
like this:

shibui:
 default-password: "{noop}pass"

spring:
 datasource:
 platform: mysql
 driver-class-name: org.mariadb.jdbc.Driver
 url: jdbc:mariadb://localhost:3306/shibui
 username: shibui
 password: shibui
 jpa:
 properties:
 hibernate:
 dialect: org.hibernate.dialect.MariaDBDialect

Then you would tell Spring Boot where to find externalized `application.yml`. That would be accomplished by passing `spring.config.additional-location`
property. For Tomcat it could be accomplished in `$CATALINA_HOME/bin/setenv.sh` file like so:

`export JAVA_OPTS="$JAVA_OPTS -Dspring.config.additional-location= "`file:/etc/shibboleth-ui/

then deploy `shibui.war` to external Tomcat and then you could access application on ` ` with `root/pass` username/password http://localhost:8080
combination

https://github.internet2.edu/TIER/shib-idp-ui/tree/master/testbed
http://localhost:8080/
mariadb://localhost:3306/shibui
http://file/etc/shibboleth-ui/
http://localhost:8080/

So, now you could use externalized `/etc/shibboleth-ui/application.yml` file to override/configure any property available to Shibboleth UI web aplication
independent of what is embedded in shibui.war deployed to external Tomcat container.

Configure HTTPS

To deploy under HTTPS, if the external Tomcat is used, the standard configuration of Tomcat HTTP connector applies here. When deploying in the
embedded Tomcat mode, in order to enable HTTPS, the following configuration properties (sample) should be used:

server:
 ssl:
 key-store: /etc/shibui/keystore.p12
 key-store-password: password
 key-store-type: pkcs12
 key-alias: tomcat
 key-password: password
 port: 8443

Note that `keystore.p12` would contain a valid SSL certificate

Authentication Options
One key decision that you will need to make is how to control authentication of users of the ShibUI. If you use the default user or a users file, note the
following on defining passwords

Currently, the supported values for ENCRYPT_SCHEME are either:

noop -- clear text password follows
bcrypt -- the following value has been encrypted with the $2a$ Bcrypt algorithm (limitation of the underlying Spring library currently incorporated is
that only the is supported.) $2a$ Bcrypt algorithm

For more info on supported Spring Security's password storage formats, see: https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle
/#pe-dpe-format

Default - Single "root" user

Simple, recommended only for secure environments (private networks available accessible via VPN or local access) with very limited user base (1-2 admin)

If you "do nothing", the ShibUI will set up a single " " (that's the username) user, with a password it will generate the first time you run it. That password root
should be displayed in the console log as the UI starts up – but you probably really don't want to rely on that. If you are going to go with this option, you
should set the password for that single "root" user in the configuration file.

application.properties: = {ENCRYPT_SCHEME}password shibui.default-password

Users Defined via File

Simple, recommended only for secure environments (private networks available accessible via VPN or local access) with limited user base (where users
will not share a single login)

Obviously, you could start playing with the ShibUI, and even have multiple people use that same single root account. But likely just about any deployer is
going to want to instead supply a "users file", and/or integrate your Shibboleth IdP as the authentication source.

Even if you are going to do the latter, you really need to "bootstrap" the Shibboleth IdP integration with at least a single user in that "users file". The reason
for that is you need to establish at least one user who has the role. ROLE_ADMIN

The ShibUI application does support accepting the UI role for a user as an attribute from the Shibboleth IdP. If the IDP user information is not able to
provide roles as listed above, you will need to configure a users file with at least one username (that will be passed from the IdP) listed with the
ROLE_ADMIN role. You can configure the users file to have as many users as you want. The format of the users file is the following set of fields,
separated by commas:

username,{ENCRYPT_SCHEME}password,firstname,lastname,ROLE_VALUE,email

The property name that is used to indicate users file is:

shibui.user-bootstrap-resource = file:/full/path/to/users/file.txt

**(the name of the file does not matter)

Example Users File

dummy,{noop}password,first,last,ROLE_DUMMY,dummy@bill.com
admin,{noop}password,admin,admin,ROLE_ADMIN,admin@foo.com
user,{noop}password,some,user,ROLE_USER,user@foo.com

https://en.wikipedia.org/wiki/Bcrypt#Versioning_history
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#pe-dpe-format
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#pe-dpe-format
http://file/full/path/to/users/file.txt
http://bill.com
http://foo.com
http://foo.com

1.

2.
3.

Every time you restart the ShibUI, it will read in that file, and update the internal user database entries with any changes. Password is still a required field,
but won't be used if your Shibboleth IdP is being used to authenticate your ShibUI users.

The property name that is used to indicate users file is:

shibui.user-bootstrap-resource = file:/full/path/to/users/file.txt

**(the name of the file does not matter)

Every time you restart the ShibUI, it will read in that file, and update the internal user database entries with any changes. Password is still a required field,
but won't be used if your Shibboleth IdP is being used to authenticate your ShibUI users.

Users Authenticated via Shibboleth IDP

Recommended when a large volume of users needs to access the ShibUI or the application will be publicly accessible

Many deployers will presumably want to use their Shibboleth IdP for authentication. The ShibUI includes a Java-based SAML SP based on the Pac4j (http
) library (SAML support built on top of the Shibboleth Consortium's OpenSAML software). This is pretty easy to configure, but it requires s://www.pac4j.org

doing the following steps, before you start up the ShibUI.

Configure, in a users file, at least one user that will match up with a Shibboleth IdP-supplied user identifier with ROLE_ADMIN (password is a
required field in the file but is irrelevant/ignored in the user file)
Create a copy of the Shibboleth IdP's metadata, and place within the file system where the ShibUI can access
Configure the following settings in . application.properties or application.yml

Note: the settings for where Pac4j will store its SAML-related certificates (and related passwords) and SP metadata (shibui.pac4j.keystorePath shibui.
) will be the locations where you want Pac4j to store (it will self-generate files on first attempt to access.pac4j.serviceProviderMetadataPath These

)don't need to be existing files, it is easiest to let Pac4j do the generation for you.

application.properties config example

Enable Pac4j, should generate its own certs and metadata on first attempt to use
shibui.pac4j-enabled = true
shibui.pac4j.keystorePath = /full/path/to/ShibUI/samlKeystore.jks
shibui.pac4j.keystorePassword = whatever_you_want
shibui.pac4j.privateKeyPassword = whatever_you_want
shibui.pac4j.serviceProviderMetadataPath = /full/path/to/ShibUI/sp-metadata.xml
shibui.pac4j.serviceProviderEntityId = http(s)://entityID/url/for/ShibUI

Path to file containing Shibboleth IdP metadata
shibui.pac4j.identityProviderMetadataPath = /full/path/to/ShibIdP/idp-metadata.xml
shibui.pac4j.forceServiceProviderMetadataGeneration = false
shibui.pac4j.callbackUrl = https://localhost:8443/callback Note this depends on the URL at which the
ShibUI will be available

Following is the max allowed age of AuthnInstant allowed
in SAML response sent to Pac4j SP
shibui.pac4j.maximumAuthenticationLifetime = 36000

SAML attribute mapping. Name of the attribute the IdP will
supply that the UI should use to populate its internal user store.
As long as it least one Shibboleth IdP username matches up with at least one
in the supplied users file that has the Admin (ROLE_ADMIN) roel, that person
can manage the role assignment of all other users thru the UI directly.
shibui.pac4j.simpleProfileMapping.username = urn:oid:0.9.2342.19200300.100.1.1
shibui.pac4j.simpleProfileMapping.firstname = urn:oid:2.5.4.42
shibui.pac4j.simpleProfileMapping.lastname = urn:oid:2.5.4.4
shibui.pac4j.simpleProfileMapping.email = urn:oid:0.9.2342.19200300.100.1.3

http://file/full/path/to/users/file.txt
https://www.pac4j.org/
https://www.pac4j.org/

application.yml config example

shibui:
 pac4j-enabled: true # Enable Pac4j, should generate its own certs and metadata on first attempt to use
 pac4j:
 keystorePath: /full/path/to/ShibUI/samlKeystore.jks
 keystorePassword: whatever_you_want
 privateKeyPassword: whatever_you_want
 serviceProviderMetadataPath: /full/path/to/ShibUI/sp-metadata.xml
 serviceProviderEntityId: http(s)://entityID/url/for/ShibUI
 identityProviderMetadataPath: /full/path/to/ShibIdP/idp-metadata.xml
 forceServiceProviderMetadataGeneration: false
 callbackUrl: https://localhost:8443/callback
 maximumAuthenticationLifetime: 3600000
 simpleProfileMapping:
 username: urn:oid:0.9.2342.19200300.100.1.1
 firstname: urn:oid:2.5.4.42
 lastname: urn:oid:2.5.4.4
 email: urn:oid:0.9.2342.19200300.100.1.3

Once you have those settings in place, then start up the ShibUI, and try to access the dashboard, you should be directed to the configured IdP for
authentication. The IdP should present an error, because you have not yet configured it with metadata and attribute release for the ShibUI.

As the files you provided for SP keystore and metadata were "non-existent", Pac4j will generate those. So now you will have a ShibUI SP metadata file
(for ShibUI) that you can add to the IdP, and configure attribute release to the ShibUI entityID, matching up with the attribute mapping you
configured above.

Re-try to access the ShibUI dashboard again, and you should be "good to go".

The above process should work no matter what deployment model you choose. What will be different between the models is how the ShibUI interacts with
the file system, and its expectations as to where various files will be found.

Configuration Properties

Database Configuration via application.yaml

This set of examples shows the basic configuration for each of the database types - please adjust server-names/addresses/ports/db-name/dbusers
accordingly with your database. Defaults shown below

Support for MySQL, Postgres, MariaDB, and SQL Server are available

database configuration

spring:
 profiles:
 include:
 datasource:
 platform: mysql
 driver-class-name: org.mariadb.jdbc.Driver
 url: jdbc:mariadb://db:3306/shibui
 username: shibui
 password: shibui
 jpa:
 properties:
 hibernate:
 dialect: org.hibernate.dialect.MariaDB103Dialect

--

spring:
 profiles:
 include:
 datasource:
 platform: mysql
 driver-class-name: com.mysql.cj.jdbc.Driver
 url: jdbc:mysql://db:3306/shibui
 username: shibui
 password: shibui
 jpa:
 properties:
 hibernate:
 dialect: org.hibernate.dialect.MySQL8Dialect

--

spring:
 profiles:
 include:
 datasource:
 platform: postgres
 driver-class-name: org.postgresql.Driver
 url: jdbc:postgresql://db:5432/shibui
 username: shibui
 password: shibui
 jpa:
 properties:
 hibernate:
 dialect: org.hibernate.dialect.PostgreSQL95Dialect

--

spring:
 profiles:
 include:
 datasource:
 platform: sqlserver
 driver-class-name: com.microsoft.sqlserver.jdbc.SQLServerDriver
 url: jdbc:sqlserver://db:1433
 username: shibui
 password: shibui
 jpa:
 properties:
 hibernate:
 dialect: org.hibernate.dialect.SQLServerDialect

application.properties settings

This is a reflection of the default file included in the distribution. Note that lines beginning with are commented out. application.properties #

Server Configuration
#server.port=8080

Logging Configuration
#logging.config=classpath:log4j2.xml

#logging.level.org.springframework.security=INFO
logging.level.org.springframework=INFO
logging.level.edu.internet2.tier.shibboleth.admin.ui=INFO

spring.main.allow-bean-definition-overriding=true

Database Credentials
spring.datasource.username=shibui
spring.datasource.password=shibui

Database Configuration H2
spring.datasource.url=jdbc:h2:mem:shibui;DB_CLOSE_DELAY=-1;DB_CLOSE_ON_EXIT=FALSE
spring.datasource.platform=h2
spring.datasource.driverClassName=org.h2.Driver
spring.jpa.database-platform=org.hibernate.dialect.H2Dialect
spring.h2.console.enabled=true
spring.h2.console.settings.web-allow-others=true

spring.jackson.default-property-inclusion=non_absent
spring.jackson.default-property-inclusion=NON_NULL
spring.jackson.mapper.accept-case-insensitive-enums=true

Database Configuration PostgreSQL
#spring.datasource.url=jdbc:postgresql://localhost:5432/shibui
#spring.datasource.driverClassName=org.postgresql.Driver
#spring.jpa.properties.hibernate.dialect=org.hibernate.dialect.PostgreSQLDialect

#Maria/MySQL DB
#spring.datasource.url=jdbc:mariadb://localhost:3306/shibui
#spring.datasource.driverClassName=org.mariadb.jdbc.Driver
#spring.jpa.properties.hibernate.dialect=org.hibernate.dialect.MariaDBDialect

Liquibase properties
spring.liquibase.enabled=false

Hibernate properties
for production never ever use create, create-drop. It's BEST to use validate
spring.jpa.hibernate.ddl-auto=update
spring.jpa.hibernate.naming.implicit-strategy=org.hibernate.boot.model.naming.
ImplicitNamingStrategyJpaCompliantImpl
spring.jpa.show-sql=false
spring.jpa.properties.hibernate.format_sql=false
spring.jpa.properties.hibernate.check_nullability=true
spring.jpa.hibernate.use-new-id-generator-mappings=true

#Envers versioning
spring.jpa.properties.org.hibernate.envers.store_data_at_delete=true

#Needed in the latest versions of Spring Boot when doing manual transaction management like we do in envers
versioning code
spring.jpa.properties.hibernate.current_session_context_class=org.springframework.orm.hibernate5.
SpringSessionContext

Set the following property to periodically write out the generated metadata files. There is no default value;
the following is just an example
shibui.metadata-dir=/opt/shibboleth-idp/metadata/generated
shibui.logout-url=/dashboard

spring.profiles.active=default

Default root user can be set in application.yml or here - setting in both places can be undeterministic
Default password must be set for the default user to be configured and setup

#shibui.default-password={noop}somepassword
shibui.default-rootuser=root

shibui.metadata-sources-ui-schema-location=classpath:metadata-sources-ui-schema.json
shibui.entity-attributes-filters-ui-schema-location=classpath:entity-attributes-filters-ui-schema.json
shibui.nameid-filter-ui-schema-location=classpath:nameid-filter.schema.json

#Actuator endpoints (info)
Un-comment to get full git details exposed like author, abbreviated SHA-1, commit message
#management.info.git.mode=full

###
metadata-providers.xml write configuration

Set the following property to periodically write out metadata providers configuration. There is no default
value; the following is just an example
The run rate is defined in milliseconds. You will need to configure your Shibboleth IDP to read the produced
file
shibui.metadataProviders.target=file:/opt/shibboleth-idp/conf/shibui-metadata-providers.xml
shibui.metadataProviders.taskRunRate=30000

Email configuration (local mailhog)
spring.mail.host=mailhog
spring.mail.port=1025
spring.mail.username=username
spring.mail.password=password
spring.mail.properties.mail.smtp.auth=false
spring.mail.properties.mail.smtp.starttls.enable=false

shibui.mail.text-email-template-path-prefix=/mail/text/
shibui.mail.html.email-template-path-prefix=/mail/html/
shibui.mail.system-email-address=doNotReply@shibui.org

#ShibUIConfiguration slurps in these values and they are bootstrapped in on startup
shibui.roles=ROLE_ADMIN,ROLE_ENABLE,ROLE_USER,ROLE_NONE
#Authenticated access roles - used by Spring Security to allow access when authenticated
shibui.roles.authenticated=ADMIN,ENABLE,USER

#In order to enable authentication via configured pac4j library (with external SAMl Idp, for example)
#This property must be set to true and pac4j properties configured. For sample pac4j properties, see
application.yml
#for an example pac4j configuration
#shibui.pac4j-enabled=true

#This property must be set to true in order to enable posting stats to beacon endpoint. Furthermore, appropriate
#environment variables must be set for beacon publisher to be used (the ones that are set when running shib-ui
in
#docker container
shibui.beacon-enabled=true

Additional Configuration via YAML Properties

The following properties may be customized through an `application.yml` file.

Attributes (for Attribute Release)

Example:

Attribute Release

custom:
 attributes:
 - name: eduPersonPrincipalName
 displayName: label.attribute-eduPersonPrincipalName
 - name: uid
 displayName: label.attribute-uid

name: The name of the entry. used to uniquely identify this entry.

displayName: This will normally be the label used when displaying this override in the UI. (set in messages.properties)

Defaults attributes

eduPersonPrincipalName: label.attribute-eduPersonPrincipalName
uid: label.attribute-uid
mail: label.attribute-mail
surname: label.attribute-surname
givenName: label.attribute-givenName
eduPersonAffiliation: label.attribute-eduPersonAffiliation
eduPersonScopedAffiliation: label.attribute-eduPersonScopedAffiliation
eduPersonPrimaryAffiliation: label.attribute-eduPersonPrimaryAffiliation
eduPersonEntitlement: label.attribute-eduPersonEntitlement
eduPersonAssurance: label.attribute-eduPersonAssurance
eduPersonUniqueId: label.attribute-eduPersonUniqueId
employeeNumber: label.attribute-employeeNumber

Relying Party Overrides

It is imperative when defining these that the "displayType" and "persistType" are known types. Typos or unsupported values here will result in that override
being skipped! Supported types are as follows: boolean, integer, string, set, list. Note that "persistType" doesn't have to match "displayType". However, the
only unmatching combination currently supported is a "displayType" of "boolean" and "persistType" of "string".

Example:
Relying Party Overrides

custom:
 overrides:
 - name: signAssertion
 displayName: label.sign-the-assertion
 displayType: boolean
 defaultValue: false
 helpText: tooltip.sign-assertion
 attributeName: http://shibboleth.net/ns/profiles/saml2/sso/browser/signAssertions
 attributeFriendlyName: signAssertions
 - name: dontSignResponse
 displayName: label.dont-sign-the-response
 displayType: boolean
 defaultValue: false
 helpText: tooltip.dont-sign-response
 attributeName: http://shibboleth.net/ns/profiles/saml2/sso/browser/signResponses
 attributeFriendlyName: signResponses
 invert: true

name: The name of the entry. used to uniquely identify this entry.

displayName: This will normally be the label used when displaying this override in the UI. (set in messages.properties)

displayType: The type to use when displaying this option

defaultValue(s): One or more values to be displayed as default options in the UI

helpText: This is the help-icon hover-over text

attributeName: This is the name of the attribute to be used in the xml. This is assumed to be a URI.

Note: The file allows you to create Relying Party overrides that will be imported into the database configuration at startup. application.yml
This can be used to bootstrap the database with a set of Relying Party overrides. Once the Shibb UI has imported these overrides, they will be
managed through the user interface (as Custom Attributes) and any changes to them in the file will be ignored in favor of application.yml
the configuration in the database. Adding overrides to the file is not recommended unless you have a large number of application.yml
overrides to add all at once.

attributeFriendlyName: This is the friendly name associated with the above attributeName.

invert:

persistType: Optional. If it is necessary to persist something different than the override's display type, set that type here. For example, display a boolean,
but persist a string.

persistValue: Required only when persistType is used. Defines the value to be persisted.

Default properties

signAssertion
displayName: label.sign-the-assertion
displayType: boolean
defaultValue: false
helpText: tooltip.sign-assertion
attributeName: http://shibboleth.net/ns/profiles/saml2/sso/browser/signAssertions
attributeFriendlyName: signAssertions
dontSignResponse
displayName: label.dont-sign-the-response
displayType: boolean
defaultValue: false
helpText: tooltip.dont-sign-response
attributeName: http://shibboleth.net/ns/profiles/saml2/sso/browser/signResponses
attributeFriendlyName: signResponses
invert: true
turnOffEncryption
displayName: label.turn-off-encryption-of-response
displayType: boolean
defaultValue: false
helpText: tooltip.turn-off-encryption
attributeName: http://shibboleth.net/ns/profiles/encryptAssertions
attributeFriendlyName: encryptAssertions
invert: true
useSha
displayName: label.use-sha1-signing-algorithm
displayType: boolean
defaultValue: false
helpText: tooltip.usa-sha-algorithm
persistType: string
persistValue: shibboleth.SecurityConfiguration.SHA1
attributeName: http://shibboleth.net/ns/profiles/securityConfiguration
attributeFriendlyName: securityConfiguration
 ignoreAuthenticationMethod
displayName: label.ignore-any-sp-requested-authentication-method
displayType: boolean
defaultValue: false
helpText: tooltip.ignore-auth-method
persistType: string
persistValue: 0x1
attributeName: http://shibboleth.net/ns/profiles/disallowedFeatures
attributeFriendlyName: disallowedFeatures
omitNotBefore
displayName: label.omit-not-before-condition
displayType: boolean
defaultValue: false
helpText: tooltip.omit-not-before-condition
attributeName: http://shibboleth.net/ns/profiles/includeConditionsNotBefore
attributeFriendlyName: includeConditionsNotBefore
invert: true
responderId
displayName: label.responder-id
displayType: string
defaultValue: null
helpText: tooltip.responder-id
attributeName: http://shibboleth.net/ns/profiles/responderId
attributeFriendlyName: responderId
nameIdFormats
displayName: label.nameid-format-to-send
displayType: set
helpText: tooltip.nameid-format
defaultValues:
- urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified
- urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress
- urn:oasis:names:tc:SAML:2.0:nameid-format:persistent
- urn:oasis:names:tc:SAML:2.0:nameid-format:transient
attributeName: http://shibboleth.net/ns/profiles/nameIDFormatPrecedence
attributeFriendlyName: nameIDFormatPrecedence

http://shibboleth.net/ns/profiles/saml2/sso/browser/signAssertions
http://shibboleth.net/ns/profiles/saml2/sso/browser/signResponses
http://shibboleth.net/ns/profiles/encryptAssertions
http://shibboleth.net/ns/profiles/securityConfiguration
http://shibboleth.net/ns/profiles/disallowedFeatures
http://shibboleth.net/ns/profiles/includeConditionsNotBefore
http://shibboleth.net/ns/profiles/responderId
http://shibboleth.net/ns/profiles/nameIDFormatPrecedence

authenticationMethods
displayName: label.authentication-methods-to-use
displayType: set
helpText: tooltip.authentication-methods-to-use
defaultValues:
- https://refeds.org/profile/mfa
- urn:oasis:names:tc:SAML:2.0:ac:classes:TimeSyncToken
- urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport
attributeName: http://shibboleth.net/ns/profiles/defaultAuthenticationMethods
attributeFriendlyName: defaultAuthenticationMethods
forceAuthn
displayName: label.force-authn
displayType: boolean
defaultValue: false
helpText: tooltip.force-authn
attributeName: http://shibboleth.net/ns/profiles/forceAuthn
attributeFriendlyName: forceAuthn

Steps to integrate a SAML2 based IdP with ShibUI
Note: be sure to read through the Authentication options above, they provide some details that apply regardless of the deployment option you have chosen.

Using Testbed Environment:

We will be using the Docker Testbed environment for this working demo. The Testbed is included in the source project. Please make sure you have
already deployed the Testbed environment and
verified it is working:

Verify can log into ShibUI via http://localhost:8080
Verify Shibboleth is running by accessing metadata page for Shibboleth instance https://localhost:443/idp/shibboleth
We will be needing this metadata info later, so feel free to save to a file now.

curl -k --output <ShibUI Root>/test-compose/shibui/conf/idp_metadata.https://localhost:443/idp/shibboleth
xml

You will need to stop the Docker containers before continuing in the next section:

docker-compose down

ShibUI Setup

We will be using the Pac4j's library for SAML2 support in ShibUI. This will be easy to implement since ShibUI uses a pluggable architecture.

To enable Pac4j, open and update the following files:

test-compose/shibui/conf/applications.properties:

shibui.pac4j-enabled=true

test-compose/shibui/conf/applications.yml:
* Under ShibUI section add:

 pac4j-enabled: true
 pac4j:
 keystorePath: "/etc/opt/samlKeystore.jks"
 keystorePassword: "changeit"
 privateKeyPassword: "changeit"
 serviceProviderEntityId: " "https://idp.example.com/shibui
 serviceProviderMetadataPath: "/etc/opt/sp-metadata.xml"
 identityProviderMetadataPath: "/etc/opt/idp-metadata.xml"
 forceServiceProviderMetadataGeneration: false
 callbackUrl: " "https://localhost:8443/callback
 maximumAuthenticationLifetime: 3600000
 simpleProfileMapping:
 username: urn:oid:0.9.2342.19200300.100.1.1
 firstname: urn:oid:2.5.4.42
 lastname: urn:oid:2.5.4.4
 email: urn:oid:0.9.2342.19200300.100.1.3

Key fields:
keystorePath: URL to an existing or newly created keystore. Create or move keystore to test-compose/shibui/conf/.
Create command:
keytool -genkeypair -alias pac4j -keypass changeit -keystore samlKeystore.jks -storepass changeit -keyalg RSA -keysize 2048 -
validity 3650
serviceProviderEntityId: Entity ID of ShibUI

https://refeds.org/profile/mfa
http://shibboleth.net/ns/profiles/defaultAuthenticationMethods
http://shibboleth.net/ns/profiles/forceAuthn
http://localhost:8080/
https://localhost/idp/shibboleth
https://localhost/idp/shibboleth
https://idp.example.com/shibui
https://localhost:8443/callback

1.

2.

3.

serviceProviderMetadataPath: Location of where you want SP metadata file to be created
identityProviderMetadataPath: Location of saved Shibb IdP metadata file (saved earlier when verifying Testbed environment)
simpleProfileMapping: Attributes needed by ShibUI to work with SAML2 IdP

Make sure the keystore file, idp metadata file, and both application files are moved to the ShibUI container when started:

test-compose/docker-compose.yml:
under shibui: volumes:

- ./shibui/conf/application.yml:/opt/shibui/application.yml
- ./shibui/conf/samlKeystore.jks:/opt/shibui/samlKeystore.jks
- ./shibui/conf/application.properties:/opt/shibui/application.properties
- ./shibui/conf/idp-metadata.xml:/opt/shibui/idp-metadata.xml

Now run Docker:

docker-compose up

When the Docker containers are running, you will need to log into the ShibUI container and copy the newly created sp-metadata.xml file to a new test-
file. compose/idp/container-files/services/sp-metadata.xml

Once this is complete, add the following to the : test-compose/idp/Dockerfile

COPY container-files services sp-metadata.xml opt shibboleth-idp metadata sp-metadata.xml/ / / / / /

Shibboleth IdP Setup

At this point you will need to add the ShibUI application as a new SP to Shibboleth IdP. The files you will need to update are located at test-compose/idp
It is assumed that you understand adding a new SP to your Shibboleth IDP/container-files/conf/.

Suggested Setup Note
The following suggested setup will allow you to configure the generation of configuration from the ShibUI to be ingested for use in your Shibboleth IDP with
the minimal amount of effort.

In your application properties, configure: - this should be the full path, including filename, of the XML output shibui.metadataProviders.target
ShibUI will generate for metadata providers (the location must be writable by the ShibUi application and readable by the Shibboleth IdP , but not a
temp directory that will get deleted/cleaned by the host system processes. eg - file:/opt/shibboleth/config/dynamic_config/metadata-
providers.xml
In your application properties, configure: - this should be the full path of the directory to create metadata source files. Again, shibui.metadata-dir
the location should be writeable by the ShibUI and readable by the IDP. eg - /opt/shibboleth/config/dynamic_metadata
In your Shibboleth configuration's services.xml file, update the block for shibboleth.MetadataResolverResources to include the shibui.
metadataProviders.target location

example

<util:list id="shibboleth.MetadataResolverResources">
 <value>%{idp.home}/conf/metadata-providers.xml</value>
 <value>%{idp.home}/system/conf/metadata-providers-system.xml</value>
 <value>${idp.home}/conf/dynamic_config/metadata-providers.xml</value> <!-- match the shibui.
metadataProviders.target value -->
</util:list>

Shibboleth will require a restart to pick up the change.

Once ShibUI is up and running, login as an admin user and create a new Metadata Provider (type:). Use the shibui. LocalDynamicMetadataResolver
metadata-dir location from step 2 above as the directory location.

The dynamic provider will provide Shibboleth with the location of any SP configured using the ShibUI.

*NOTE: you can use the testbed/integration setup in the project source code to test how this integration works and to see an example of the full end-to-end
workings of the ShibUi and Shibboleth IDP

User Maintenance

TAP Beacon instrumentation

http://file/opt/shibboleth/config/dynamic_config/metadata-providers.xml
http://file/opt/shibboleth/config/dynamic_config/metadata-providers.xml

Shibboleth Idp UI software includes piece of instrumentation functionality which sends a small batch of statistical data about the environment in which
application is deployed such as Docker image name, version, application name, etc. to a running "Beacon collector" facility which is exposed as a REST
HTTP endpoint, as defined here: In the specification page it is https://spaces.at.internet2.edu/display/TWGH/TIER+Instrumentation+-+The+TIER+Beacon
described to be implemented as a external cron job running inside Docker container, which is true for other TAP docker images instrumented with Beacon,
but Shibboleth Idp UI application has this functionality implemented as an optional Java module. It is an opt-in type of functionality which is off by default
but could be turned on with the following application property:

shibui.beacon-enabled=true

Once it is turned on it will assynchronoiusly send beacon data which it will gather from necessary environment variables (which will be set by TAP Docker
image for shibboleth idp ui application), but if running outside of TAP Docker container and those environment variables are not set, even though the
beacon module is enabled, the data will not be sent. Below is the example of necessary environment variables that need to be set in order for Beacon
module to kick in if running outside of TAP Docker container:

LOGHOST=" "https://collector.testbed.tier.internet2.edu
LOGPORT="5001"
IMAGE="shibui_local_no_image"
MAINTAINER="local_no_maintainer"
VERSION="1.11.0-SNAPSHOT"
TIERVERSION="191010"

Like
 No labels

Edit Labels

blocked URL

Write a comment...

https://spaces.at.internet2.edu/display/TWGH/TIER+Instrumentation+-+The+TIER+Beacon
https://collector.testbed.tier.internet2.edu/
https://confluence.unicon.net/confluence/display/ProServ/Shibboleth+IdP+UI+Deployment+Instructions
https://confluence.unicon.net/confluence/display/ProServ/Shibboleth+IdP+UI+Deployment+Instructions
https://confluence.unicon.net/confluence/s/pipxsy/8505/f5e71ce5e7eab96b69c873705d53960b71f86fff/_/images/icons/profilepics/add_profile_pic.svg

	Deployment Instructions

