Grouper Training Environment - text to copy and paste -
301.4 - GSH

@ If you mistype one or more lines in GSH, type :c to clear all the lines since the last executed command.

To exit GSH, type :q

Reference Links

® Grouper wiki command reference for GSH

O https://spaces.internet2.edu/pages/viewpage.action?pageld=14517859
® Groovy syntax: https://groovy-lang.org/documentation.html

© For a quick language intro, see the Style guide page

O Also useful is The Groovy Development Kit page
® Grouper API Javadoc: https://software.internet2.edu/grouper/doc/

© 2.6.x (active release branch) -> Grouper API -> Project Reports -> Javadoc
® 3rd Party site Baeldung - Groovy blog posts: https://www.baeldung.com/tag/groovy/
® 3rd Party site MrHaki - Groovy blog posts: https://blog.mrhaki.com/

Exercise 301.4.1 - Getting started

Start up your Grouper docker stack. You will want the Ul running (log in as banderson) so you can see visually how the shell commands impact objects in
Grouper.

With a container started and running, GSH can initiated by running:
gt e-gsh

On start, you'll see some helpful information about your grouper environment that will look something like this:

Detected Grouper directory structure 'webapp' (valid is api, api M/n, webapp)

Usi ng GROUPER_HOME: / opt / grouper/ gr ouper Webapp/ VEEB- | NF

Usi ng GROUPER_CONF: / opt/ grouper/ grouper Webapp/ VEEB- | NF/ cl asses

Usi ng JAVA: fusr/libl/jvmjava-1.8.0-anazon-corretto/ bin/java

Usi ng CLASSPATH: / opt / grouper/ gr ouper Webapp/ VEEB- | NF/ cl asses: / opt/ gr ouper/ gr ouper Webapp/ VEB- | NF/ | i b
/*:/opt/tomee/lib/servlet-api.jar

usi ng MEMORY: 64m 750m

Loadi ng class “comnysql.jdbc.Driver'. This is deprecated. The new driver class is ~comnysql.cj.jdbc.Driver
The driver is automatically registered via the SPI and nanual |oading of the driver class is generally
unnecessary.

Grouper starting up: version: 2.6.0, build date: 2021/09/17 09: 14: 52 +0000, env: <no | abel configured>
grouper. properties read from /opt/grouper/grouper Wbapp/ VEEB- | NF/ cl asses/ gr ouper . properties

Grouper current directory is: /opt/grouper/grouper\Webapp/ VEB- | NF

| og4j . properties read from / opt / grouper/ grouper Webapp/ VEEB- | NF/ cl asses/ | og4j . properties

Grouper is logging to file: /tnp/logpipe, at mn |level WARN for package: edu.internet?2.m ddl eware. grouper,
based on | 0g4j.properties

grouper. hi bernate. properties: /opt/grouper/grouper Wbapp/ VEEB- | NF/ cl asses/ gr ouper . hi ber nat e. properties
grouper. hi bernate. properties: root@dbc: nysql://1 ocal host: 3306/ gr ouper ?

Char Set =ut f 8&useUni code=t r ue&char act er Encodi ng=ut f 8

subj ect . properties read from /opt/grouper/grouper\Webapp/ VEB- | NF/ cl asses/ subj ect. properties
sources configured in: subj ect. properties

subj ect . properties | dap source id: eduLDAP: deno

subj ect. properties internal source id:g:isa

subj ect. properties groupersource id: g:gsa

subj ect . properties groupersource id: grouperEntities

subj ect. properties jdbc2 source id: grouper Ext ernal : Grouper JdbcConnecti onProvi der

Type hel p() for instructions

G oovy Shell (2.5.0-beta-2, JVM 1.8.0_302)

Type ':help' or ':h" for help.

groovy: 000> :load '/opt/grouper/grouper \Wbapp/ VEEB- | NF/ cl asses/ gr oovysh. profile'
groovy: 000>

https://spaces.internet2.edu/pages/viewpage.action?pageId=14517859
https://groovy-lang.org/documentation.html
https://groovy-lang.org/style-guide.html
https://groovy-lang.org/groovy-dev-kit.html
https://software.internet2.edu/grouper/doc/
https://www.baeldung.com/tag/groovy/
https://blog.mrhaki.com/

Note that the Grouper version is indicated, information on what the connection string to the Grouper database is, where various configuration files are read
from, and available subject sources. If your subject source is based on a database instead of Idap, you will see information on the connection string to that
database too.

A friendly GroovyShell prompt greets us at the end (groovy:000>) and we are ready to start interacting with GSH. We’'ll start by looking up information
about the subject banderson.

def subj = findSubject("banderson")

Result:

===> Subj ect id: 800001147, sourceld: eduLDAP, name: Bob Anderson

Groovy is Java-like syntax, and has strong variable type checking, but it is optional. We could have written "Subject subj = ..." and the interpreter would
make sure it returns a value of type edu.internet2.middleware.subject.Subject. In this case, we are not worried about being strict, and we write "def" to
indicate that the interpreter will figure out the type at runtime.

Also note that GSH will output information about the last run command. This is helpful in validating that the banderson we found is in fact Bob Anderson,
but let's make sure that this is really Bob Anderson, the Grouper administrator, and not some other imposter Bob Anderson. Let's check the members of
the sysadmin group, to check whether that group's Bob Anderson matches.

def admi ns = get Menbers("etc:sysadnin")

When we run that command though, we see an error:

ERROR edu. i nternet 2. m ddl ewar e. gr ouper . excepti on. G oupNot FoundExcept i on:
Cannot find group with name: 'etc:sysadmn'

at edu.internet?2. m ddl eware. grouper.internal.dao. hi b3. H b3G oupDAQ fi ndByNarme (Hi b3G oupDAQ j ava: 1182)
at edu.internet2. mddl eware. grouper.internal.dao. hi b3. H b3G oupDAQ. fi ndByNane (Hi b3G oupDAQ. j ava: 1144)
at edu.internet2. m ddl ewar e. grouper. G oupFi nder. fi ndByNaneNoCache (G oupFi nder.java: 623)

at edu.internet?2. m ddl eware. grouper. GroupFi nder. fi ndByNane (G oupFi nder.j ava: 593)

at edu.internet2. m ddl eware. grouper. GroupFi nder. fi ndByNane (G oupFi nder.java: 537)

at edu.internet2.mddl eware. grouper. app. gsh. get Menbers. i nvoke (get Menbers.java: 79)

at edu.internet?2. mddl eware. grouper. app. gsh. get Menber s$i nvoke. cal I (Unknown Sour ce)

at groovysh_eval uat e. get Menbers (groovysh_eval uat e: 4)

GSH displays a friendly version of the problem (highlighted in red on most consoles) and we can quickly see that we just put in the wrong group name. The
additional stack information is helpful if you ever need to report a problem out to Grouper's bug reporting system.

Let's fix our mistake. Use the up arrow to go to your previous command to fix it up without having to retype the entire thing so it matches the command
below:

def admi ns = get Menbers("etc:sysadm ngroup")

Result:

===> [' 0903df 94669042ef 8ac9995ad9d61f bf' /' group' /' g: gsa', '800000026' /' person'/' eduLDAP', '800001026' /' person'
/' eduLDAP', '800002061' /' person' /' eduLDAF',
' 800000252' /' person' /' eduLDAP', ' 800001147' /"' person' /' eduLDAP']

As with all commands, the result of the evaluation is output to the console, even if it's not assigned to a variable. In this case, the result is a list of Member
objects. The group is small enough that we can pick out that Bob Anderson's subject id 800001147 is in the list. A more precise way is to convert the
Member objects in the list to Subject objects (the Member class has a method to do the conversion), and check whether our banderson Subject is in the
list:

https://todos.internet2.edu/projects/GRP/issues

adnins. col | ect { nenber -> nmenber. getSubject()}.contains(subj)

===> true

The answer is yes, the subject in question, banderson, is one of the members of the sysadmin group. The command above introduces some idiomatic
Groovy mixed with Java. The collect method is a Groovy method that takes a block of code, runs it over each member of a list, and returns a new list of the
converted values. The contains() method is a Java method that checks whether an object is within a list. Note that we did not specify a variable to assign
because we did not care to use the result for anything else. The console still output the result of the evaluation.

Exercise 301.4.2 - Creating a folder/group structure
Most GSH commands run under the context of a specific user, in order to check appropriate privileges, and log audit actions. The default session in GSH

is the root subject GrouperSystem. We want to run the commands as banderson, so we will start a new session as that user. The command needs a
Subject variable to pass in, and we can use the subj variable that we already defined.

G ouper Sessi on session = G ouper Session. start (subj)

===> 2b54a7f 37d28408f a39ba3edf 142818, ' 800001147' , ' per son’

Note that we used subj from the above exercise where we looked up and found banderson. Let’s create a folder called tmp:

new St enBave().assi gnNane("tnp"). assi gnDi spl ayNane(" Tenporary Fol der at Root").save()
/| ===> Sten{displ ayName=Tenporary Fol der at Root, nane=t np, uui d=624bbb508b884d39993b0779bd64a9b2,
creat or=e77dbca323e94bf 487041e638523d5b0]

This uses a chained builder class to set up how we want to create the folder, finally calling save() to run the action. We set up the internal path as "tmp",
and a display name of "Temporary Folder at Root".

Now let's create a folder within tmp:

new St enBave().assi gnNane("t np: subfol der"). assi gnDi spl ayExt ensi on(" Tenp Subf ol der"). save()
/| ===> Sten{displ ayNane=Tenporary Fol der at Root: Tenp Subfol der, nanme=t np: subf ol der,
uui d=10aca691666e4269b6f 7ed224f 46e65b, cr eat or =e77dbca323e94bf 487041e638523d5b0]

We specified the full path of the folder to make this folder in. In this case we set a display name for the folder, but we only needed the last part of it, the
"extension", since the parent folder already has a name.

IMPORTANT: You are often acting as a super user in GSH, so do be careful with any commands to ensure you do not accidentally destroy any data in
your Grouper environment. GSH will not prompt you if it is OK to delete something once you hit enter on the command.

Take a look in the Ul (you will want to login as banderson for these exercises). We will see our new folder and subfolder created:

B8 Temporary Folder at Root

More actions ~

Path: Temporary Folder at Root
1D path: tmp

Alternate ID path:

1D: tmp

Created: 2020/10/08 05:38:45.976

Creator: Bob Anderson (banderson,)

Last edited:

Last editor:

1D index: 10068

uuiD: 1bbb3572abe34e30bf1efcdf1842de5d
Less

Folder contents Privileges More ~

Filter for: | Folder, group, or at Apply filter Reset

Name
Up one folder

I Temp Subfolder

Show: | 50 W Showing 1-1 of 1 - First | Prev | Next | Last

Note that the creator of the folder is Bob Anderson, because we started the Grouper session as banderson. If you started a root session, the creator would
instead be GrouperSysAdmin.

Click on More Actions -> View audit log.

B8 Temporary Folder at Root [eotioser |

More actions =
More

Folder contents Privileges

The audit log displays all recent activity related to this folder.

Filter by date: = all v { and) [)Show extended results? Find entries
Date = Actor Engine Summary
2020/10/08 05:40 AM & Bob Anderson (banderson,) G5H command Added folder Temp Subfolder .
2020/10/08 05:38 AM & Bob Anderson (banderson,) G5H command Added folder Temporary Folder at Root .
Show: | 50 o Showing 1-2 of 2 - First | Prev | Next | Last

Note that the audit log shows that this folder was created through a GSH command. This can be very valuable in determining whether it was Bob
Anderson logged in through the Ul creating folders or someone acting as Bob Anderson via GSH that created the folder instead. We’'ll look at an example
audit log with both when we create a group next.

Back in your GSH console, now create a group. Unlike the folder creation above, we want to save the result to a variable so we can reuse it.

Group group = new G oupSave().assi gnName("t np: subfol der:test_group"). assi gnDi spl ayExt ensi on("Testing G oup").
save()
/1 ===> G oup[nane=t np: subf ol der: test_group, uui d=14dee38631944cf ca8390cf 0323d7aa3]

This created the group, and the set that newly created group to a variable of type edu.internet2.middleware.grouper.Group. This Group class has a method
to add a member.

...and add a member to it:

group. addMenber ("jsmith")

ERROR groovy. | ang. M ssi ngMet hodExcept i on:

No signature of nmethod: edu.internet2.niddl eware. grouper. G oup. addMenber () is applicable for argunent types:
(String) values: []jsmith]

Possi bl e sol utions: addMenber (edu.internet2. m ddl eware. subj ect. Subj ect), addMenber (edu.internet2. m ddl eware.
subj ect . Subj ect, bool ean), addMenber (edu.internet2. m ddl ewar e. subj ect. Subj ect, edu.internet2. m ddl eware. grouper.
Fi el d), addMenber (edu.internet?2.niddl eware. subj ect. Subj ect, edu.internet2. i ddl eware. grouper. Field, boolean),
toMenber (), hasMenber (edu.internet?2. m ddl ewar e. subj ect. Subj ect)

We guessed wrong at the method call, and there is no Group.addMember() method that takes a string. The interpreter can help with some suggestions of
alternatives that would work. There is a version of addMember() that takes a Subject type. So we need to get the Subject for jsmith, similar to how we did
for banderson.

Subject jsmith = findSubject("jsmith")
/I ===> Subject id: 800001278, sourceld: eduLDAP, name: Joel Smith

group.addMember(jsmith)
/I ===>null

The addMember() command didn't return any value. But we would have seen a Java exception if it failed. We can get an exception if we try to add the
same subject twice:

group. addMenber (j smi t h)

ERROR edu. i nt ernet 2. m ddl ewar e. gr ouper . except i on. Menber AddAl r eadyExi st sExcepti on:
menber ship al ready exists,
Probl emin Hi bernateSession: H bernateSession (11d0bff5): not New, not Readonly, READ WRI TE_NEW
activeTransaction, session (6c569caf), nenbership: group: tnp:subfolder:test_group, subject: 800001278, field:
menbers, uuid: null, startDate: null, endDate: null,
, group nane: tnp:subfolder:test_group, subject: Subject id: 800001278, sourceld: eduLDAP, field: nenbers,
Probl emin Hi bernateSession: Hi bernateSession (233d2b76): new, not Readonly, READ WRI TE_NEW
not Acti veTransacti on, session (6c569caf)
at edu.internet2. m ddl eware. grouper. Menber shi p. i nt er nal _addl nmedi at eMenber shi p (Menbershi p. j ava: 1296)
at edu.internet2. mddl eware. grouper. G oup$4. cal | back (G oup.java: 1621)
at edu.internet2. mddl eware. grouper. hi bernat e. Hi ber nat eSessi on. cal | backHi ber nat eSessi on
(Hi ber nat eSessi on. j ava: 703)

at edu.internet?2. mddl eware. grouper. G oup.internal _addMenber (G oup.java: 1593)
at edu.internet2. mddl eware. grouper. Goup.internal _addMenber (G oup.java: 1543)
at edu.internet?2. m ddl eware. grouper. G oup. addMenber (G oup.java: 1124)

at edu.internet?2. m ddl eware. grouper. G oup. addMenber (G oup.java: 1043)

at edu.internet2. m ddl eware. grouper. G oup. addMenber (G oup.java: 1006)

at edu.internet?2.mddl eware. grouper. G oup$addMenber. cal |l (Unknown Source)

Depending on our goal, we may want the API to quietly ignore attempts to add an existing member. There is a second addMember() method that takes a
second parameter, exceptionlfAlreadyMember:

group. addMenber (jsmith, false)
/] ===> fal se

(As a reminder, the arguments for all of these commands are available on the GSH wiki page)

Let's take a look in the Ul at our new group we just created:

Home » Root > Temporary Folder at Root * Temp Subfolder

% Testing Group i

More actions ~
More

Members Privileges More -

The following table lists all entities which are members of this group.

Filter for: All members v I Apply filter Reset Advanced

Remove selectad members

n name empers cose action
[_] Entity Membership Ch cti

] & John Smith (jsmith,) Direct Actions

Show: | 50 o Showing 1-1 of 1 - First | Prev | Next | Last

While you are in the Ul, go ahead and also add ‘aadams’ to the group too as a member. Once you have done that, take a look at the audit log for the group:

https://spaces.at.internet2.edu/pages/viewpage.action?pageId=14517859

Home > Root > Temporary Folder at Root > subfolder

% Testing Group N

More actions ~
More

Members Privileges More ~

The audit log displays all recent activity related to this group.

Filter by date: | all w (and }[| Show extended results? Find entries
Date « Actor Engine Summary
2021/09/30 4:44 AM & Bob Anderson Web user interface Added Ashley Adams as a member of the Testing Group group.
2021/09/30 4:43 AM & Bob Anderson G5H command Added Joel Smith as a member of the Testing Group group.
2021/09/30 4:43 AM & Bob Anderson GSH command Added group Testing Group .
Show: | 50 A Showing 1-3 of 3 - First | Prev | Next | Last

Note how even though both group member adds were done as Bob Anderson, we can see that the second add was down through the Ul while the first
was done as a GSH command.

Exercise 301.4.3 - Working with the API

The first commands we ran — findSubject("banderson”) and getMembers("etc:sysadmin”) — are helper commands that often take strings, meant to simplify
common operations. Other method calls like Group.addMember() tap into the Java API. All of the Java public methods in the Grouper jar -- plus methods
from all the other jars in the WEB-INF/lib directory — can be called from within GSH.

The GSH wiki is the best starting point to search for ways of accomplishing GSH goals. The Groovy interpreter also can give hints via tab completion. For
example, typing "subj." and hitting the tab key will list the public methods that can be called on it.

/1 type in subj. and hit tab

groovy: 000> subj .

get Attri buteVal ue(get Attri but eVal ueOr CommaSepar at ed(get Attri but eVal ueSi ngl eval ued

(get Attri but eVal ues(get Attri butes(

attributes description descri ptionOverride i
d name

naneQverri de source sourceld t
ransl ati onvap type

t ypeName

For a deeper dive, the Javadoc documentation for callable methods is available online.

Exercise 301.4.4 - Automation
We have received a request from an application owner to:

® Create a folder app:foo:userGroups
® Given a list of user ids, create a group named as the id, but make the display name the user's first and last name (i.e., the LDAP "cn" attribute)
® Grant each user read and update permissions for their group

Depending on how many users are in the list, this is potentially tedious to do through the Ul. All these steps can be automated with GSH. For the incoming
ids, a data object can be created within the script and initialized. Depending on their needs, modifying this step to read data from a file can be a later
enhancement.

https://spaces.at.internet2.edu/pages/viewpage.action?pageId=14517859
http://software.internet2.edu/grouper/doc/

The users' names don't need to be part of the incoming data. Because of how the LDAP subject source is configured, Grouper can access certain
attributes from a subject. Let's figure out how to get the subject first and last name.

subj . getAttributes()
/1l ===> [sn:[Anderson], enployeenunber:[800001147], cn:[Bob Anderson], uid:[banderson], givennane:[Bob], mail:
[Bob. Ander son@mwck. edu. i nval i d]]

subj . get Attri buteVal ue("cn")
/| ===> Bob Anderson

First, set up the ids, and create the folder.

def ids = [

"pharris",
"gander so",
"l jacobso",
"nroberts",
"mhowar d",
"rharris",
"cj ohnson",
"j henders",
"j brown",
"j sunmer s"

]

Stem stem = new St enBSave() . assi gnNanme("app: f oo: user G oups") . assi gnCr eat ePar ent St ensl f Not Exi st (true) .save()

Do a quick test to make sure the subjects all resolve, and have a name field we can use. This example uses idiomatic Groovy to loop through subjects. It is
also fine to use Java syntax, i.e. "for (String id: ids) {...":

ids.each { id ->
Subj ect subj = findSubject(id)
def cn = subj.getAttributeVal ue("cn")
println cn

}

/*

Patricia Harris
Gregory Anderson
Li sa Jacobson

Mel i ssa Roberts
Megan Howard

Ronal d Harris

Chri st opher Johnson
Jerem ah Hender son
Janmes Brown

John Sunmers

*/

Everything looks good, so do the loop again, but now create the groups and assign the privileges. The grantPriv helper command takes Privilege Java
objects, in this case Privilege.READ and Privilege.UPDATE.

ids.each { id ->
Subj ect subj = findSubject(id)
def cn = subj.getAttributeVal ue("cn")
Group g = new G oupSave(). assi gnName("app: f 0o: user G oups: ${i d} ") . assi gnDi spl ayExt ensi on(cn). save()
grantPriv(g.getNane(), id, Privilege. READ)
grantPriv(g.getNane(), id, Privilege. UPDATE)
println "Done with ${g.get Nane()}"

/*

Done with app: foo:userGroups: pharris
Done wi th app: foo: user Groups: gander so
Done with app: foo:userGoups:|jacobso
Done wi th app: foo: user Groups: nroberts
Done wi th app: foo: user G oups: mhowar d
Done with app:foo:userGoups:rharris
Done wi th app: foo: user Groups: cj ohnson
Done with app:foo:userGoups:jhenders
Done wi th app: foo: user G oups: j br own
Done with app: foo: user Groups:j sumrers
===> [pharris, ganderso, |jacobso, nroberts, nmhoward, rharris, cjohnson, jhenders, jbrown, jsummers]
*/

In the UlI, verify the groups were created. In the Privileges tab, spot check that read/update privileges have been created for the user matching the group

name.

Home > Root » app » foo » userGroups

% Christopher Johnson | mermoers |

Group actions ~
Show details

Members Privileges More ~

The following table lists all entities with privileges on this group.

Filter for: Enit ! Apply filter Reset Advanced
Update: Assign the ADMIN privilege hd Update selected
Attribute Attribute Choose
[] Entity name « Admin Read Update Optin OptOut read update View action
| & Christopher Johnson v v Acticns ¥
Show: 50 o Showing 1-1 of 1 - First | Prev | Next | Last

(Extra) Exercise 301.4.5 - Build a Report (making a GSH script)

In this exercise, we are going create an automatically generated report of all memberships for something like a daily report to a security officer around
campus who is interested in who has access to what for auditing purposes. GSH can help us make that pretty simple without having to write any sort of
database query. We will be generating that report using GSH, but also looking at how to run a script in GSH without having to copy and paste all of the

lines of the script.

Open your favorite text editor and copy in the following script:

def session = G ouper Session. start Root Sessi on();

def group = G oupFinder. findByNane(session, "basis:sis:prog_status:all:xo", true);
def effectiveMenbers = group. get Ef fecti veMenbers();

def i medi at eMenbers = group. get | nmedi at eMenbers();

def witer = new File('/tnp/out.txt').newWNiter(' UTF-8")

witer.println(String.join("\t", "id", "name", "Effective", "Imediate"));

for (Menber m group. get Menbers()) {
writer.print(mgetSubject().getld() + "\t" + mgetSubject().getName() + "\t");
witer.print(effectiveMenbers.contains(m.toString() + "\t");
writer.println(inmedi ateMenbers. contains(n).toString() + "\t");

}

witer.close();

Save your script (in this case called report.gsh) and here are two ways we can run the gsh script:

Copy the script in to the container and then run it:

$ docker cp report.gsh 101.1.1:/tmp/report.gsh

Open a shell into the container and switch to the tomcat user:

$./gte-shell

$ sudo -u tomcat /bin/bash

Run the report

$ bin/gsh.sh /tmp/report.gsh

Note that data in containers is not persistent and it would be better to mount in a directory where you keep your GSH scripts.

The output shows very little other than the output for each command run:

groovy: 000> :|oad '/opt/grouper/grouper\Wbapp/ VEEB- | NF/ cl asses/ groovysh. profile'
groovy: 000> : gshFil eLoad '/tnp/report.gsh'

=> 93b3848f f ecf 418584f d24f a0e3c9405, ' G ouper Systeni , ' appli cati on’

=> & oup[nanme=basi s: si s: prog_status: all: xo, uui d=807ef 842a7a64928b3f b64f 3f f f 343ae]

===> ['800000785' /' person' /"' eduLDAP', '800001652'/"' person'/' eduLDAP', '800002031'/' person'/' eduLDAP",

' 800000236' / ' person' /' eduLDAP', ' 800000107' /' person' /' eduLDAP', '800002227'/' person'/'eduLDAP', '800002752'

/' person' /' eduLDAP', '800001853' /' person'/' eduLDAP', '800001200'/' person'/'eduLDAP' , '800001673' /"' person'
/' eduLDAP' , '800002431'/' person' /' eduLDAP', '800002675'/' person'/'eduLDAP' , '800002581'/' person' /' eduLDAP'
' 800002426' /' person' /' eduLDAP']

===> groovy. i 0. Encodi ngAwar eBuf feredWiter @1lb76a7d

===> nul |

=> nul |

===> nul |

groovy: 000> :exit

We can see our output report by running the following:

$ docker exec -i 101.1.1 cat /tmp/out.txt

id name Effective | Immediate
800000785 = Dawn Stewart false true
800001652 = Brianna Ballard false true
800002031 = Kristen Taylor false true
800000236 = Jennifer Hunt false true

800000107 ' Christopher Johnson | false true
800002227 @ Jeffrey Freeman false true
800002752 ' Jesse Stafford false true

800001853 = Kevin Mendoza false true

800001200 ' Laura Villa false true

800001673 Ray Miranda false true
800002431 Ryan Bennett false true
800002675 = Sara Jones false true
800002581 = Brian Hernandez false true
800002426 = Gerald Perkins false true

...and we see our tab separated report we can now ship off to whoever requested it.
You could execute your recurring GSH scripts either by calling the docker commands from cron, or perhaps creating a container based on tier-grouper that

runs crond instead of any of the grouper components. Your container would be built with the crontab and you would be able to schedule any functionality
you need with grouper components like GSH. But that is an exercise left to the reader (for now).

(Extra) Exercise 301.4.6 - Creating and Running a Grouper Loader Job

For this exercise, we are going to create a very simple loader job that loads all subjects from the grouper members database table and run it. While the Ul
does provide a very easy to use mechanism to create and run loader jobs, there are times where you may find it convenient to use GSH instead. GSH can
be helpful if there are a bunch of loader groups you need to create and do not want to click through the Ul for each one. Much of how to create Grouper
Loader jobs in GSH is documented on the Grouper Loader wiki page.

First, create the group.

session = G ouper Sessi on. st art Root Sessi on() ;
addSten("test", "subfol der", "subfol der")
addG oup(“"test:subfolder”, "l oader_test","Test Loader G oup")

Now assign it the attributes needed to make it a loader job. This time, instead of writing one line at a time, try copying the entire block below in to GSH:

session = G ouper Sessi on. start Root Sessi on() ;

gr oupAddType("test: subfol der: | oader_test", "grouperLoader");

set GroupAttr("test:subfol der:|oader_test", "grouperLoader DoNane", "grouper");

set G oupAttr("test:subfol der:|oader_test", "grouperLoaderType", "SQ._SI MPLE");

set GroupAttr("test:subfol der:|oader_test", "grouperLoaderSchedul eType", "CRON');

set G oupAttr("test:subfol der:|oader_test", "grouperLoaderQartzCron", "0 * * * * 2");

set GoupAttr("test:subfol der:|oader_test", "grouperLoaderQery", "select distinct subject_id as SUBJECT_I D,

subj ect _source SUBJECT_SOURCE_| D from grouper. grouper_nenbers where subject_source = 'edulLDAP ");

GSH handled the line feeds between commands and you should see each command run followed by ‘true’ printed after each line. In the next exercise we
will show you how to run a block of commands as a script, which is the preferred way over copy/paste many lines at a time.

Now let’s dry run the job to see what it would do. Because dry run requires a group object and not the group id as a string we are going to put a function to
find the group in as the argument to dry run command:

https://spaces.at.internet2.edu/display/Grouper/Grouper+-+Loader

sessi on = G ouper Sessi on. st art Root Sessi on() ;
| oader Dr yRunOneJob(Gr oupFi nder . f i ndByNane(sessi on, 't est: subfol der: | oader_test'), null)

/*

G oup: test:subfolder:|loader_test add Subject id: 800001356, sourceld: eduLDAP

Group: test:subfolder:|oader_test add Subject id: 800002613, sourceld: edulLDAP

Group: test:subfolder:loader_test add Subject id: 800001651, sourceld: eduLDAP

G oup: test:subfolder:|loader_test add Subject id: 800000099, sourceld: eduLDAP

===> | oader dry ran successfully, would have inserted 2884 nenbershi ps, woul d have del eted 0 nenberships, total
nmenbershi p count: 2884, unresol vable subjects: 0

*/

Note that variable called ‘session’ that we set back in the first exercise is needed for the GroupFinder functions. It seems that what this loader job will do is
fine, so let’s run the job:

session = G ouper Sessi on. st art Root Sessi on() ;
| oader RunOneJob(Gr oupFi nder . fi ndByNane(sessi on, 't est: subfol der: | oader_test'))

/*

===> | oader ran successfully, inserted 2884 nenberships, deleted 0 nenberships, total nenbership count: 2884,
unr esol vabl e subjects: 0

*/

Verify in the Ul that the membership count matches what GSH reported. Also check out under More->Loader that the settings are the same as if you were
to configure a loader job in the Ul

(Extra) Exercise 301.4.7 - Burn it Down

Sometimes there are folders in Grouper that you simply want to destroy everything under including all history that it ever existed. A good example of this
are course enrollment groups for a particular semester that are likely a lot of data and that changed often during the semester. After a certain amount of
time, these groups will be meaningless and can be destroyed (including all history) in order to free up some storage. We do not have any course
enroliments in this exercise, so let's destroy all of our hard work from Exercise 301 instead.

If you do not have GSH open, fire it up again and run the following:

obliterateStem("test", true, true);

/*

Woul d obliterate stem test

Woul d obliterate stem test: subfolder

Woul d be done del eting group: test:subfolder:| oader_test
Woul d be done del eting group: test:subfolder:test_group
Woul d be done obliterating stem test:subfolder

Woul d be done obliterating stem test

===> true

*

The first argument specifies what stem we want to destroy. The second argument is set to true as a test only mode. The third argument specifies whether
you want this also destroyed from all point in time data too. We see above that it would destroy all of our work today as expected. Let's do it:

obliterateStem"test", false, true);

/*

Qoliterating stem test

Ooliterating stem test:subfolder

Done del eting group: test:subfol der:|oader_test

Done del eting group: test:subfolder:test_group

Done obliterating stem test:subfolder

Done obliterating stem test

Waiting for Grouper Daenpbn to process before obliterating frompoint in time data. This is expected to take a
few mnutes. Be sure the G ouper Daenpon is running.

oliterating stemfrompoint in tine: test, |D=b8blcbecf1bb4919822d0dd412c86c4a

Done del eting group frompoint in tinme: test:test, |D=fbdb9881c28e43f8b0d1756481d6651f

Qoliterating stemfrompoint in time: test:subfolder, |D=ac9a6978f1a94849a3760eb1bd606824

Done del eting group frompoint in time: test:subfol der:|oader_test, |D=4597c45d2d9f 454ca56793f 6f 6d56ddc
Done deleting group frompoint in tinme: test:subfolder:test_group, |D=9ca911618ff74ad2ac0d954fff8f a3c9
Done obliterating stemfrompoint in tinme: test:subfolder, |D=ac9a6978f1a94849a3760eb1bd606824

Done obliterating stemfrompoint in tine: test, |D=b8blcbecf1bb4919822d0dd412c86c4a

===> true*/

This may take a while if you have a very large set of folders/groups to delete. This can also be very dangerous since, as you can see, there was no
confirmation asked when we ran the command above before it destroyed everything. We can look in the Grouper Ul to verify that our work is no longer
there:

Conclusion

You have now used GSH to manipulate folders, groups, and members in Grouper and even create a report that could be automated by running script on a
regular basis through cron. Finally, we used GSH to efficiently destroy everything from a given folder. These were all basic examples, but we hope that you
can begin to see the potential power for GSH commands in creating things like templates for new services, bulk adding/removing members, writing a script
a script to bootstrap your development environment, etc. All of these training exercises are built out using GSH scripts.

Here is an example from the training environment that bootstraps the environment by building out a complete tree of folders and groups, adds members,
grants privileges, creates a loader job, add attributes, creates a composite group and assigns Grouper rules.

https://github.internet2.edu/docker/grouper_training/blob/master/full-demo/container_files/demo.gsh

https://github.internet2.edu/docker/grouper_training/blob/master/full-demo/container_files/demo.gsh

	Grouper Training Environment - text to copy and paste - 301.4 - GSH

