
1.

2.
a.
b.
c.
d.

3.
a.

Registry BulkLoad Shell
BulkLoad Shell allows for faster loading of large initial datasets. BulkLoad Shell is available as of Registry v3.3.0. The benefits of BulkLoad Shell are
typically seen for datasets of at least 50k records.

BulkLoad Shell Constraints
Preparing Data For BulkLoad

Supported Tables
Plugin Tables
Inbound JSON File Format

File Metadata Object
Data Objects
Cross References
Record Metadata
CO Person Records

Linking to Organizational Identity Sources
CO Group Records
Plugin Configuration Records
Examples

Running BulkLoad
BulkLoad Usage
Performance Considerations
Steps
Follow Up Steps

BulkLoad Shell Constraints
It is important to understand that BulkLoad bypasses the normal Registry data processing engine, and as such is only suitable for an initial bulk load of
data.

BulkLoad currently only supports Postgres databases. Support for MySQL/MariaDB may be added in a future release. ()CO-1906
BulkLoad will disable database indexes, meaning the entire Registry application should be unavailable during the actual load process. In a multi-
tenant deployment, bulk loading data for a single CO will require all COs to be offline.
BulkLoad supports core data model attributes only, which should be sufficient for most use cases.

 As of Registry v4.0.0, plugin models are supported as well.
BulkLoad bypasses data validation, , , duplicate identifier checks, , processing, data normalization identifier assignment record matching pipeline
and . Prior to loading, data must be formatted and cleansed properly. (Some of these steps, such as identifier assignment and provisioning
provisioning, may be manually run after the load is completed.)
Pooled Org Identities are not supported.
Additional data model constraints are described below.

Preparing Data For BulkLoad
Configure the CO. In order to use , populate assignments (via CO Person Roles), , and linking to Extended Types COU CO Group Memberships Or

, the appropriate configurations must first be made in the target CO.ganizational Identity Sources
Cleanse the inbound data.

Make sure there are no duplicate identifiers.
Make sure there are no duplicate CO Group Memberships (ie: that a given CO Person is not added to the same CO Group twice).
Currently, tabs () are not supported in attribute values.\t
Newlines () are supported for fields that support multiple lines, but must be double escaped ().\n \\n

Prepare the inbound file, as described below.
Automatic Group Memberships will be established by BulkLoad. Do not include these in the inbound file.

Supported Tables

The following tables are supported. In general, any field specified in the documentation is supported. Foreign keys and other attribute Registry Data Model
metadata will be automatically inserted by BulkLoad, and so should be omitted. CoOrgIdentityLinks will also be automatically inserted.

ad_hoc_attributes
addresses
co_groups
co_group_members
co_org_identity_links
co_people
co_person_roles
email_addresses
history_records
identifiers
names
org_identities

https://todos.internet2.edu/browse/CO-1906
https://spaces.at.internet2.edu/display/COmanage/Normalizing+Data
https://spaces.at.internet2.edu/display/COmanage/Configuring+Registry+Identifier+Assignment
https://spaces.at.internet2.edu/display/COmanage/Integrating+With+ID+Match
https://spaces.at.internet2.edu/display/COmanage/Registry+Pipelines
https://spaces.at.internet2.edu/display/COmanage/Provisioning+From+Registry
https://spaces.at.internet2.edu/display/COmanage/Organizational+Identity+Pooling
https://spaces.at.internet2.edu/display/COmanage/Extending+the+Registry+Data+Model
https://spaces.at.internet2.edu/display/COmanage/Representing+Organizational+Hierarchy+Through+COUs+and+Departments
https://spaces.at.internet2.edu/display/COmanage/CO+Groups+and+Group+Memberships
https://spaces.at.internet2.edu/display/COmanage/Organizational+Identity+Sources
https://spaces.at.internet2.edu/display/COmanage/Organizational+Identity+Sources
https://spaces.at.internet2.edu/display/COmanage/CO+Groups+and+Group+Memberships
https://spaces.at.internet2.edu/display/COmanage/Registry+Data+Model
https://spaces.at.internet2.edu/display/COmanage/cm_ad_hoc_attributes
https://spaces.at.internet2.edu/display/COmanage/cm_addresses
https://spaces.at.internet2.edu/display/COmanage/cm_co_groups
https://spaces.at.internet2.edu/display/COmanage/cm_co_group_members
https://spaces.at.internet2.edu/display/COmanage/cm_co_org_identity_links
https://spaces.at.internet2.edu/display/COmanage/cm_co_people
https://spaces.at.internet2.edu/display/COmanage/cm_co_person_roles
https://spaces.at.internet2.edu/display/COmanage/cm_email_addresses
https://spaces.at.internet2.edu/display/COmanage/cm_history_records
https://spaces.at.internet2.edu/display/COmanage/cm_identifiers
https://spaces.at.internet2.edu/display/COmanage/cm_names
https://spaces.at.internet2.edu/display/COmanage/cm_org_identities

org_identity_source_records
telephone_numbers
urls

Plugin Tables

As of Registry v4.0.0, BulkLoad Shell supports three types of Plugin tables: , and . tables are those with a CoGroup CoPerson Configuration CoPerson
foreign key to CoPerson (which will automatically be inserted), tables operate similarly. tables have no dependent foreign keys. CoGroup Configuration
The plugin models must be declared in the JSON File metadata (described below).

Inbound JSON File Format

The inbound file consists of multiple JSON objects, one to a line. The first object is a File Metadata object, which is described below. Subsequent lines
each hold one object record, as described below.

Data is generally represented as a complete primary object (CoGroup, CoPerson), with related data (EmailAddress, Identifier, CoPersonRole, etc) nested
within. Foreign keys are automatically inserted by BulkLoad Shell.

Values must be their actual database values, not application enums. For example, a valid value is " ", not " ". In general, the CoPerson:status A Active
values are documented in the .Data Model

File Metadata Object

The following Metadata attributes are available:

pluginModels: Available as of Registry v4.0.0, this specifies records to load that are associated with plugin models. is specified as pluginModels
an object with up to two keys: and . The former is a list of models that have foreign keys to CoPerson, the latter is a list of CoPerson Configuration
models that do not have foreign keys. Models must be specified using Cake Plugin notation, eg . See the examples section, MyPlugin.MyModel
below.
local: A JSON object that may be locally defined. This object is intended to allow annotations, comments, and other information to be encoded in
the inbound file for locally defined purposes. The entire object is ignored by BulkLoad Shell.

The Metadata line may be an empty JSON object () if no Metadata is required.{}

The JSON Schema definition of the File Metadata Object is available .here

Data Objects

The JSON Schema definition for Data Objects is available .here

Cross References

It is possible to reference primary objects defined earlier in the inbound file using . This enables scenarios such asCross References

Bulk Loading CO Groups, then creating CO Group Memberships to those groups within a later CO Person record
Assigning a Sponsor to a CO Person Role

When preparing the inbound data, each relevant record is given a (identified in the record metadata via the attribute). cross reference label xref
Subsequent objects may refer to the Registry internal foreign key assigned for the newly created object, via notation, which can be used @{label}
anywhere in any non-metadata attribute of a suitable type (eg: not boolean, etc).

 Cross Reference labels must be alphanumeric.

 Labels are parsed the JSON document is parsed, and so must not create invalid JSON. This mostly means that they must be placed in quotes after
when used to create a foreign key (eg:). This will technically convert the value to a JSON string rather than an integer, but PHP will coerce co_group_id
it back to an integer when needed.

Cross References are available as of Registry v4.0.0.

Record Metadata

Each primary object (CO Group, CO Person) may have Metadata attributes, of which the following are available:

objectType: The primary object type, either or . This attribute is not currently required.CoGroup CoPerson
xref: The cross reference label used to subsequently identify this object. For example, if the xref label is assigned to a CoPerson object, the abc1
object could be referred to in a later object via .{ "co_person_id": "@{abc1}" }
local: A JSON object that may be locally defined. This object is intended to allow annotations, comments, and other information to be encoded in
the inbound file for locally defined purposes. The entire object is ignored by BulkLoad Shell.

Record Metadata is available as of Registry v4.0.0.

CO Person Records

https://spaces.at.internet2.edu/display/COmanage/cm_org_identity_source_records
https://spaces.at.internet2.edu/display/COmanage/cm_telephone_numbers
https://spaces.at.internet2.edu/display/COmanage/cm_urls
https://spaces.at.internet2.edu/display/COmanage/Registry+Data+Model
https://github.com/Internet2/comanage-registry/tree/4.0.0/app/Config/Schema/json/BulkLoadShell/meta-schema.json
https://github.com/Internet2/comanage-registry/tree/4.0.0/app/Config/Schema/json/BulkLoadShell/schema.json

Each subsequent line consists of a single JSON object representing a single CO Person. The members of the object are labeled using the model name
(CamelCase, singular) in this layout:

CoPerson (object)
CO Person Status will not be recalculated, so set it to the desired value

CoGroupMember (array)
Nested Groups are not supported

CoPersonRole (array)
Address (array)
AdHocAttribute (array)
TelephoneNumber (array)
As of Registry v4.0.0, can be assigned using Cross References, as long as the Sponsor CO Person record is Sponsors and Managers
loaded before the Sponsored CO Person record.

EmailAddress (array)
HistoryRecord (array)
Identifier (array)
Name (array, exactly one Name should be flagged as primary)
OrgIdentity (array)

OrgIdentity (object, OrgIdentity fields go here)
Address (array)
AdHocAttribute (array)
EmailAddress (array)
HistoryRecord (array)
Identifier (array)
Name (array, exactly one Name should be flagged as primary)
TelephoneNumber (array)
Url (array)

OrgIdentitySourceRecord (array)
OrgIdentity (object)

OrgIdentity (object, OrgIdentity fields go here)
Address (array)
AdHocAttribute (array)
EmailAddress (array)
HistoryRecord (array)
Identifier (array)
Name (array, exactly one Name should be flagged as primary)
TelephoneNumber (array)
Url (array)

Url (array)
As of Registry v4.0.0, Plugin Models that have a foreign key into CoPerson (and are declared in the metadata) may also be included as an array.

Records must be "pre matched". If a CO Person has multiple Org Identities, they must be placed in the same JSON object.

Linking to Organizational Identity Sources

Records can be linked to , to link them for purposes of future updates. To do so, include a suitable Organizational Identity Sources
OrgIdentitySourceRecord, linked to the appropriate OIS configuration (via the foreign key). The OrgIdentity as would be org_identity_source_id
returned by the appropriate OIS backend must be included. The OrgIdentity should include the SORID as one of its Identifiers.

Do not specify CO Person Roles that would be created via Pipelines attached to the OIS. BulkLoad will create them.

CO Group Mappings are supported, because creating these mappings would require instantiating the OIS plugin backend, which would degrade not
performance. Instead, create the desired CoGroupMember records in the JSON record.

CO Group Records

Each subsequent line consists of a single JSON object representing a single CO Group. The members of the object are labeled using the model name
(CamelCase, singular) in this layout:

CoGroupMember (array)
HistoryRecord (array)
Identifier (array)
Plugin Models that have a foreign key into CoGroup (and are declared in the metadata) may also be included as an array.

Nested Groups are not supported.

CO Group Records are supported as of Registry v4.0.0.

Plugin Configuration Records

Plugin Configuration Records may be included one per line. See the examples, below.

Examples

The later examples here are shown with newlines for readability, however the actual file should include no newlines, except to separate each record.

https://spaces.at.internet2.edu/display/COmanage/CO+Person+and+Person+Role+Status
https://spaces.at.internet2.edu/display/COmanage/CO+Groups+and+Group+Memberships#COGroupsandGroupMemberships-COGroupsandGroupMemberships-NestedGroups
https://spaces.at.internet2.edu/display/COmanage/Sponsors+and+Managers
https://spaces.at.internet2.edu/display/COmanage/Organizational+Identity+Sources
https://spaces.at.internet2.edu/display/COmanage/Organizational+Identity+Sources#OrganizationalIdentitySources-OrganizationalIdentitySources-COGroupMappings
https://spaces.at.internet2.edu/display/COmanage/CO+Groups+and+Group+Memberships#COGroupsandGroupMemberships-COGroupsandGroupMemberships-NestedGroups

Simple records without newlines, including empty metadata

{}
{"CoPerson":{"status":"A"},"Name":[{"given":"Myrtle","family":"Jefferson","type":"official","primary_name":
true}]}
{"CoPerson":{"status":"A"},"Name":[{"given":"Novella","family":"Torres","type":"official","primary_name":true}]}

Simple single record, with newlines for readability

{
 "CoPerson": {
 "status": "A"
 },
 "Name": [
 {
 "given": "Myrtle",
 "family": "Jefferson",
 "type": "official",
 "primary_name": true
 }
],
 "Identifier": [
 {
 "identifier": "d3b5b15c-3ce2-4ce5-9752-acb941ed0e78",
 "type": "reference",
 "login": false,
 "status": "A"
 },
 {
 "identifier": "476-56-5741",
 "type": "national",
 "login": "false",
 "status": "A"
 }
],
 "EmailAddress": [
 {
 "mail": "MyrtleWJefferson@university.edu",
 "type": "official",
 "verified": true
 }
],
 "CoGroupMember": [
 {
 "co_group_id": 37,
 "member": true,
 "owner": false
 }
],
 "CoPersonRole": [
 {
 "affiliation": "employee",
 "title": "Employee",
 "o": null,
 "ou": "Biology",
 "TelephoneNumber": [
 {
 "country_code": "1",
 "number": "507-798-2339",
 "type": "campus"
 }
]
 }
],
 "OrgIdentity": [

 {
 "OrgIdentity": {
 "affiliation": "member"
 },
 "Name": {
 "given": "Myrtle",
 "family": "Jefferson",
 "type": "official",
 "primary_name": true
 },
 "Identifier": [
 {
 "identifier": "24n9vBgj@social.com",
 "type": "eppn",
 "login": true,
 "status": "A"
 }
],
 "EmailAddress": [
 {
 "mail": "myrtle787@social.com",
 "type": "personal",
 "verified": true
 }
]
 }
]
}

Single record attached to an OIS, with newlines added for readability

{
 "CoPerson": {
 "status": "A"
 },
 "Name": [
 {
 "given": "Novella",
 "family": "Torres",
 "type": "official",
 "primary_name": true
 }
],
 "Identifier": [
 {
 "identifier": "0dc187ef-5d10-412d-83d2-b55221b556b5",
 "type": "reference",
 "login": false,
 "status": "A"
 },
 {
 "identifier": "509-74-0614",
 "type": "national",
 "login": "false",
 "status": "A"
 }
],
 "EmailAddress": [
 {
 "mail": "NovellaDTorres@university.edu",
 "type": "official",
 "verified": true
 }
],
 "CoGroupMember": [
 {
 "co_group_id": 22,
 "member": true,
 "owner": false

 }
],
 "OrgIdentitySourceRecord": [
 {
 "org_identity_source_id": 2,
 "sorid": "hrms2",
 "source_record": "{\"0\":\"hrms2\",\"1\":\"\",\"2\":\"\",\"3\":\"Novella\",\"4\":\"\",\"5\":\"Torres\",\"
6\":\"\",\"7\":\"\",\"8\":\"\",\"9\":\"\",\"10\":\"\",\"11\":\"\",\"12\":\"NovellaDTorres@university.edu\",\"
13\":\"913-626-2317\",\"14\":\"1\",\"15\":\"509-74-0614\",\"16\":\"Employee\",\"17\":\"Linguistics\",\"18\":\"
0dc187ef-5d10-412d-83d2-b55221b556b5\"}",
 "reference_identifier": "0dc187ef-5d10-412d-83d2-b55221b556b5",
 "OrgIdentity": {
 "OrgIdentity": {
 "affiliation": "employee",
 "title": "Employee",
 "o": null,
 "ou": "Linguistics"
 },
 "Address": [],
 "Name": [
 {
 "given": "Novella",
 "family": "Torres",
 "type": "official",
 "primary_name": true
 }
],
 "EmailAddress": [
 {
 "mail": "NovellaDTorres@social.com",
 "type": "personal",
 "verified": true
 }
],
 "Identifier": [
 {
 "identifier": "0dc187ef-5d10-412d-83d2-b55221b556b5",
 "type": "reference",
 "login": false,
 "status": "A"
 },
 {
 "identifier": "509-74-0614",
 "type": "national",
 "login": "false",
 "status": "A"
 },
 {
 "identifier": "hrms2",
 "type": "sorid",
 "login": "false",
 "status": "A"
 }
],
 "TelephoneNumber": [
 {
 "country_code": "1",
 "number": "913-626-9988",
 "type": "mobile"
 }
]
 }
 }
]
}

Metadata header, with newlines for readability

{
 "meta":{
 "pluginModels":{
 "CoPerson":[
 "SshKeyAuthenticator.SshKey"
],
 "Configuration":[
 "MyPlugin.GreenObject"
]
 }
 }
}
{ ... }

Record with Metadata

{"meta":{"pluginModels":{"CoPerson":["SshKeyAuthenticator.SshKey"],"Configuration":["MyPlugin.GreenObject"]}}},
{"CoPerson":{"status":"A"},"SshKey":[{"ssh_key_authenticator_id":1,"type":"ssh-dss","skey":"abc123"}]},
{"GreenObject":{"my_attribute":"my_value"}},
{"GreenObject":{"my_attribute":"my_other_value"}}

Cross Reference Example with Unix Clusters and Groups

{"meta":{"pluginModels":{"CoPerson":["SshKeyAuthenticator.SshKey","UnixCluster.UnixClusterAccount"],"
Configuration":["UnixCluster.UnixClusterGroup"]}}}
{"meta":{"objectType":"CoGroup","xref":"gobj1"},"CoGroup":{"co_id":"2","name":"Primary Unix Cluster","
description":"Primary Unix Cluster users","open":false,"status":"A","group_type":"S","auto":false,"
nesting_mode_all":false}}
{"meta":{"objectType":"CoPerson","xref":"obj1"},"CoPerson":{"status":"A"},"Name":[{"given":"Nelly","family":"
Brasel","type":"official","primary_name":true}],"CoGroupMember":[{"co_group_id":"@{gobj1}","member":true,"
owner":false}],"UnixClusterAccount":[{"unix_cluster_id":1,"sync_mode":"F","status":"A","username":"nbrasel","
uid":10001,"gecos":"Nelly Brasel","login_shell":"\/bin\/bash","home_directory":"\/home\/nbrasel","
primary_co_group_id":44}]}
{"meta":{"plugin":"UnixCluster","objectType":"UnixClusterGroup","xref":"obj2"},"UnixClusterGroup":
{"unix_cluster_id":1,"co_group_id":"@{gobj1}"}}

Running BulkLoad

BulkLoad Usage

cake bulk_load [-a actor] [-t dbtype] coid infile

where

actor: Actor identifier to record to column, defaults to Changelog actor_identifier Bulk Load Shell
coid: Target CO to load records to
dbtype: Target database type, currently only the default is supportedpostgres
infile: JSON file to process records from (In Registry v3.3.x only, multiple files may be specified)

Be careful with file ownerships here. You will need to run this command as the web server user or as root, depending on whether or not the web
server user can read the input file. If running as root, make sure any files generated in the cache directory (wherever app/tmp points to) owned
by root are subsequently deleted.

https://spaces.at.internet2.edu/display/COmanage/Registry+History+and+Changelogs

1.
2.

a.
3.

1.

Performance Considerations

BulkLoad can process ~500k records on a single vCPU with 2GB of RAM and a local database in about 10 minutes. Larger datasets may require
somewhat more memory, but additional vCPUs are unlikely to help much. Make sure the database server has sufficient disk space available. (A few GB
should be sufficient, depending on the size of the dataset.) Communications to a database server over a network (vs local to the same server) may result
in slower run times.

See also: Registry Installation - PHP (Memory Considerations)

Steps

Make sure access to the web interface is unavailable, if anyone else might try to use it.
Run the BulkLoad command, specifying the target CO ID to load the records to. Depending on the number of records to load, the process will
take a few minutes to complete.

./Console/cake bulk_load coid infile.json
If the web interface is unusually slow after the load is completed, try and running the command to rebuild the clearing caches cake database
indexes again.

Follow Up Steps

If desired, schedule Jobs to assign identifiers and reprovision all. These Jobs may take some time to complete.

https://spaces.at.internet2.edu/display/COmanage/Registry+Installation+-+PHP#RegistryInstallationPHP-RegistryInstallationPHP-MemoryConsiderations
https://spaces.at.internet2.edu/display/COmanage/Upgrading+Registry

	Registry BulkLoad Shell

