
Travis CI

Wiki Home Download Grouper Grouper Guides Community Contributions Developer Resources Deployment Guide

Quick start
For a normal commit: Just push to the master branch, wait about 10 minutes and check Travis () for a successful buildhttps://travis-ci.com/Internet2/grouper

For a numbered release:

Tag the desired commit with string GROUPER_RELEASE_a.b.c (a, b, c are numbers)
Check Travis () in about 20 minutes to check for successful build and upload to Sonatypehttps://travis-ci.com/Internet2/grouper
Log into Sonatype and release the artifacts from holding (see for details)this page

Current Status
As of December 2021, our open source account on travis-ci.com had run out of free credits, and had stopped building releases. There was an option to
petition for more free credits that would have lasted for a while. However, it was decided at that time to move the process to our own Jenkins build process
which used servers owned by Internet2.

Detailed Description
Grouper is configured against Travis CI to execute the full build on every commit. For tags matching a specific pattern of "GROUPER_RELEASE_a.b.c
(rc#)" it will also build release artifacts using that version from the tag, and publish those artifacts to the Maven Sonatype repository. There is an Internet2

 connected to the Grouper Github repository, and you (?) should have access to view the Travis build status if you have /Grouper account in Travis
developer access in Github (CR Feb/2020 not sure about this). .

Travis builds all grouper branches where there is a .travis.yml at the root of the repository, as long as the current branch is specified as an allowed branch
in that file. This is a YAML configuration that tells Travis what version of Java should be available, which commands to use for the build lifecycle and which
scripts to execute after a successful build. Before Grouper 2.5.0, the Travis setup included a post-build step to publish the Maven snapshot artifacts to the
Sonatype snapshot repository. As of version 2.5.0, this no longer publishes snapshot artifacts, as they were of limited use. Instead, it simply does a `mvn
package` phase of grouper-parent (repeated for the set of Java vendors and versions defined in the YAML file) to test for a successful build of all projects.
If the Travis build status for the current branch changes from success->fail or fail->success, the committer should get an email reporting the status change.

For a pushed tag that matches GROUPER_RELEASE_n.n.n or GROUPER_RELEASE_n.n.n"rc"n, a second Travis job will be initiated. As with normal
commits, the job will start with a maven "package" goal for all defined Java targets. If successful, the next step will be to execute the script travis/deploy-to-
sonatype.sh, to rebuild the artifacts as release versions and publish them to our Sonatype staging repository. The script will parse out the dotted version
out of the tag string, update the versions in the pom.xml, rebuild all the projects, generate source and javadoc artifacts, and then sign them with an
included PGP key. Finally, the script will deploy all these artifacts and associated pgp signatures (*.asc files) to the Sonatype staging repository.

If successful, the artifacts will appear in a new folder in our Sonatype staging repository (), Currently (Feb 2020), there is a shared https://oss.sonatype.org/
account to access this repository. A subfolder will appear with a name such as "eduinternet2middlewaregrouper-####". The status should be "closed",
indicating that Travis was able to finalize its upload of the artifacts. In this state, the repository can be tested as a private repository, by adding it as a
profile in maven settings.xml (see below), or it can be promoted to "release" which will publish it in the public repository. After being released, the artifacts
will eventually be propagated to other Maven repository sites, such as and .https://search.maven.org/ https://mvnrepository.com/

Notes on encrypting values for Travis

Because Travis requires certain secrets for the Sonatype login and PGP encryption to be accessible via a Git repository, encrypted versions of the files
can be stored and then decrypted as needed by the Travis jobs. If a value needs to be modified or added, There is a ruby-based script that can do the
encryption. It can be installed in a custom Docker container as a one-off process, or installed directly on a Unix workstation. The following steps have been
successful in getting a working Docker container for the travis client.

1) Install an improved RNG service on the host

sudo apt install rng-tools5
sudo rngd -r /dev/urandom

2) Set up a new API key in your Github account

Go to https://github.com/settings/tokens

Our Travis CI is no longer the current method for building Grouper artifacts. See the for the current method.Jenkins page

https://spaces.at.internet2.edu/display/Grouper/Grouper+Wiki+Home
https://spaces.at.internet2.edu/display/Grouper/Grouper+Downloads
https://spaces.at.internet2.edu/display/Grouper/Administration+Guides
https://spaces.at.internet2.edu/display/Grouper/Community+Contributions
https://spaces.at.internet2.edu/display/Grouper/Grouper+Developers%27+Wiki
https://spaces.at.internet2.edu/display/Grouper/Grouper+Deployment+Guide
https://travis-ci.com/Internet2/grouper
https://travis-ci.com/Internet2/grouper
https://spaces.at.internet2.edu/display/Grouper/Grouper+Sonatype+repository
https://travis-ci.org/Internet2/grouper
https://travis-ci.org/Internet2/grouper
https://oss.sonatype.org/
https://search.maven.org/
https://mvnrepository.com/
https://github.com/settings/tokens
https://spaces.at.internet2.edu/display/Grouper/Jenkins+build+for+Grouper+jars

(roles for old legacy .org site) Generate a personal access token (name "travis command line client", access read:org, repo:status,
repo_deployment, user:email, write:repo_hook)
Generate a personal access token (name "travis command line client", access – see read:org, repo, user:email, write:repo_hook htt

)ps://github.com/travis-ci/travis.rb/issues/708#issuecomment-697005010
Record the resulting API token, since it won't be repeated

3) Initialize the docker container

host

#host
docker pull ubuntu:bionic
docker run --name travis-client -it ubuntu:bionic bash

container

#container
apt-get update
apt-get install -y gcc make ruby-dev
gem install travis

4) Log into the travis client

travis login --com --github-token {token}

(result: Successfully logged in as <github-account>!)

5a) Encrypt a value

travis encrypt SONATYPE_USER=_secret_ -r Internet2/grouper --pro
travis encrypt SONATYPE_PWD=_secret_ -r Internet2/grouper --pro
(not currently used) travis encrypt GH_TOKEN=_secret_ -r Internet2/grouper --pro

(Our Travis account is on travis-ci.com; if it were on travis-ci.org we would remove parameter --pro)

The result will go into .travis.yml, added to the section:

env:
 global:
 - secure: "....."

5b) OR encrypt a file

travis encrypt-file secretfile secretfile.enc -r Internet2/grouper

The resulting encrypted file can then be added to the Git repository (preferably the /travis/ subdirectory). The output will give helpful information on
additional openssl job steps to be added to .travis.yml that will decrypt the file before it is needed.

If you try to execute `travis login` without setting up the api key, you will get an email detailing these same steps

https://github.com/travis-ci/travis.rb/issues/708#issuecomment-697005010
https://github.com/travis-ci/travis.rb/issues/708#issuecomment-697005010

	Travis CI

