
Authentication to UI and Web Services in Grouper v2.5+

Wiki Home Download Grouper Grouper Guides Community Contributions Developer Resources Deployment Guide

Add a new password via gsh for UI
Add a new password via gsh for WS
Example with local entity and WS authentication
Summary
Password table in Grouper: grouper_password
JWT table recently used in Grouper: grouper_password_recently_used
Manage passwords
Basic authn built in to Grouper
Passwords for WS

Add a new password via gsh for UI

v2.5.29+
new GrouperPasswordSave().assignApplication(GrouperPassword.Application.UI).assignUsername("GrouperSystem").
assignPassword("password").save();

Add a new password via gsh for WS

Note: if you are setting a password for a local entity to do web service calls, you should probably use the uuid (unique id) as the username, though the
system name (id) might work too (it works in grouper client). Colons shouldnt be used in HTTP usernames, so the uuid is better

v2.5.29+
new GrouperPasswordSave().assignApplication(GrouperPassword.Application.WS).assignUsername("GrouperSystem").
assignPassword("password").save();

Local entity with uuid
new GrouperPasswordSave().assignApplication(GrouperPassword.Application.WS).assignUsername
("7a7937ad646849fc8278fb2fc6c45156").assignPassword("password").save();

Example with local entity and WS authentication

For example with container 2.5.36

Start the quickstart

docker run --detach --name grouper-qs \
 --publish 443:443 -e GROUPER_MORPHSTRING_ENCRYPT_KEY=abcdefg12345dontUseThis \
 -e GROUPERSYSTEM_QUICKSTART_PASS=pass i2incommon/grouper:2.5.36 quickstart

Note: quickstart sets this env var: -e GROUPER_WS_GROUPER_AUTH=true

Add a local entity

https://spaces.at.internet2.edu/display/Grouper/Grouper+Wiki+Home
https://spaces.at.internet2.edu/display/Grouper/Grouper+Downloads
https://spaces.at.internet2.edu/display/Grouper/Administration+Guides
https://spaces.at.internet2.edu/display/Grouper/Community+Contributions
https://spaces.at.internet2.edu/display/Grouper/Grouper+Developers%27+Wiki
https://spaces.at.internet2.edu/display/Grouper/Grouper+Deployment+Guide

Set a password:

mchyzer@ISC20-0637-WL:~/container$ docker exec -it -u tomcat grouper-qs bash
[tomcat@f7adb51426d3 WEB-INF]$ cd bin
[tomcat@f7adb51426d3 bin]$./gsh.sh
groovy:000> new GrouperPasswordSave().assignApplication(GrouperPassword.Application.WS).assignUsername
("7a7937ad646849fc8278fb2fc6c45156").assignPassword("myPass").save();
groovy:000> :q
[tomcat@f7adb51426d3 bin]$ exit

Make a group: test:testGroup and allow test:localEntity to READ it, and add GrouperSystem as member

Call web service with grouper client

mchyzer@ISC20-0637-WL:~/container$ docker cp grouper-qs:/opt/grouper/grouperWebapp/WEB-INF/lib/grouperClient-
2.5.36.jar .

mchyzer@ISC20-0637-WL:~/container$ vi grouper.client.properties
grouperClient.webService.url = https://localhost:443/grouper-ws/servicesRest
grouperClient.webService.login = 7a7937ad646849fc8278fb2fc6c45156
grouperClient.webService.password = myPass
turn off SSL until a real SSL certificate is installed
NOTE, THIS IS NOT GOOD SECURITY AND IS FOR THE QUICK START ONLY!
grouperClient.https.customSocketFactory = edu.internet2.middleware.grouperClient.ssl.EasySslSocketFactory

mchyzer@ISC20-0637-WL:~/container$ java -jar grouperClient-2.5.36.jar --operation=getMembersWs --
groupNames=test:testGroup
GroupIndex 0: success: T: code: SUCCESS: group: test:testGroup: subjectIndex: 0: GrouperSystem

Or curl:

mchyzer@ISC20-0637-WL:~/container$ curl --insecure --user 1ebc381f335c4c6f8dadfc5b76e85dc8:myPass
https://localhost:443/grouper-ws/servicesRest/v2_5_000/groups/test%3AtestGroup/members

Summary

This page outlines the approach to authentication to UI and in Grouper 2.5 and above.web services

First off, whatever authentication you may have used in the past for Grouper UI and WS will still be available.
For example, if you are using Shibboleth and LDAP WS authentication, then most of this won't apply to you (only the section on restricting source IP
address).

Grouper 2.5+ provides a better built-in WS authentication method than basic auth

Passwords not stored in clear text in tomcat-users
Passwords not transmitted on the wire
We need something not tomcat specific
Tomcat config files are painful to automate the use/removal of
Ability to filter the source address for WS

This provides easier quick starts and bootstraps in UI/WS

These default to off and can be enabled in config.

Who can change passwords? Admins or admins of service accounts

Complexity? Grouper assigns complex passwords

Password table in Grouper: grouper_password

Note, even if Grouper is not doing authn, it could still restrict the source address. For WS, any authns would get a record inserted or updated here

Column Type Description

id varcha
r (40)

uuid of this entry (one user could have ui and ws credential)

username varcha
r (255)

username or local entity system name

member_id varchar
(40)

this is a reference to the grouper members table. dont make a foreign key right now. When someone logs in, save their
GrouperPassword object in the request somewhere, and when the subject is resolved, if the member id resolved doesnt match
the member id in the GrouperPassword row, then update it and store to the database. this column should have a non-unique
index (since same entity can have multiple rows here)

entity_type varcha
r (20)

username or localEntity

is_hashed varcha
r (1)

T for is hashed, F for is public key

encryption
_type

varcha
r (20)

e.g. SHA-256 or RS-256 (key type)

the_salt varcha
r (255)

secure random prepended to hashed pass

the_pass
word

varcha
r
(4000)

encrypted public key or encrypted hashed salted password

application varcha
r (20)

ws (includes scim) or ui

allowed_fr
om_cidrs

varcha
r
(4000)

network cidrs where credential is allowed from

https://spaces.at.internet2.edu/x/w4Xd

recent_so
urce_addr
esses

varcha
r
(4000)

json with timestamps. only successes. (limit to most recent 20)

[
{ millis: 123455667,
 ip: "1.2.3.4"
},
{ millis: 123455669,
 ip: "1.2.3.5"
}
]

To parse

from json to JSONObject to array
System.arrayCopy, move index 0-(length-1) -> 1-(length), add most recent to index 0
convert back to JSON array and object and string and store

failed_sou
rce_addre
sses

varcha
r
(4000)

if restricted by cidr, this was failed IPs (json with timestamp?) (limit to most recent 10)

[
{ millis: 123455667,
 ip: "1.2.3.4"
},
{ millis: 123455669,
 ip: "1.2.3.5"
}
]

last_authe
nticated

timesta
mp

when last authenticated successful

last_edited timesta
mp

when this was last edited

failed_logi
ns

varcha
r
(4000)

Keep 20

[
{ millis: 123455667,
 ip: "1.2.3.4"
},
{ millis: 123455669,
 ip: "1.2.3.5"
}
]

JWT table recently used in Grouper: grouper_password_recently_used

A process would clean these out after the configured drift (10 minutes)

Unique index on the tuple: grouper_password_id and jwt_jti

Column Type Description

id varchar(40) uuid of this row (primary key)

grouper_password_id varchar(40) foreign key to grouper_password table

jwt_jti varchar (100) e.g. uuid of this entry (sent from client)

jwt_iat integer (11) seconds since 1970 that this was issued

Manage passwords

UI for admins to set a user's (or local entity's) UI password or could restrict source IP cidrs. UI passwords would need to follow strength rules

UI for admins or end users (self serve) to download a new generated WS private key or password for a local entity they can ADMIN or restrict source IP
cidrs

Someone who can create in a folder (and optionally in a group who can create WS credentials)
Create a local entity
Download its password or private key (can only download once)
Grant privs to the local entity
Use it in WS calls

Admins and end users can not view or re-download passwords or private keys

Basic authn built in to Grouper

If configured (for quick start only), the UI could use basic auth and use passwords configured for users

Its possible users could reset their password using their old password to authenticate.

Passwords for WS

Your LDAP or Kerberos or apache or tomcat authn would still work. Its possible there could be multiple allowed... i.e. to transition into local entity JWT
authn. Depending on configuration.

Private key signed JWT would be recommended with WS, or required at some sites. Source IP's could be required too

Username is the system name of the local entity
Private key is a generated by Grouper and downloaded once

This is not sent across the wire in WS calls

JWT details

To authenticate with JWT the client would
Generate a valid jwt jti (e.g. uuid)
Have the correct time within configured drift (10 minutes?), get the seconds since 1970 (GMT)
Send a "Bearer" authorization header sfdlh23kjh.kjhsdfkjhsf.kjh345kjhkjh (three parts separated by dot)
First part is the header is base64 url encoded

{
 alg: "RS-256",
 typ: "JWT"
}

The second part is what makes the token unique and identifies the user

jti is a unique value per request (across clusters), cannot be re-used. e.g. a uuid
username is: system name of local entity
iat: Number of seconds since 1970 (that the ticket is issued), the number received on server needs to be within the allowable
time drift

{
 jti: "abc123",
 username: "org:businessSchool:credentials:wiki",
 iat: 1234567
}

Thus the same request cannot be replayed

See Also

Grouper Web Services Authentication

Authentication to the Grouper UI

https://spaces.at.internet2.edu/display/Grouper/Grouper+Web+Services+Authentication
https://spaces.at.internet2.edu/display/Grouper/Authentication+to+the+Grouper+UI

	Authentication to UI and Web Services in Grouper v2.5+

