
API Source

Modes
Installation

Poll Mode (Apache Kafka)
Configuration

Push Mode
Pull Mode
Poll Mode

Poll Mode (Apache Kafka)
Endpoints and Actions

Push Mode
Pull Mode
Poll Mode

Message Format
PUT (Request) / GET (Response)

sorAttributes
returnURL

PUT (Response)
Poll (Apache Kafka)

Multiple Roles
Message Meiosis
Message Format
GET
DELETE
Updating Records
Use With Bulk Load
Additional Considerations

See Also

The API Organizational Identity Source Plugin is designed to integrate using RESTful APIs and message buses.The API implemented is based on, but not 
identical to, the .CIFER SOR-Registry Strawman Write API

Modes
Org Identity Source Mode Support

Manual Search and Linking Supported in Pull Mode

Enrollment, Authenticated Not supported

Enrollment, Claim Not supported

Enrollment, Search Supported in Pull Mode

Enrollment, Select Supported in Pull Mode

Org Identity Sync Mode Support

Full Supported in Pull Mode

Query Supported in Pull Mode

Update Supported in Pull Mode

Manual Supported in Pull Mode

Installation
This is a non-core plugin, see   for more information.Installing and Enabling Registry Plugins

Poll Mode (Apache Kafka)

Use of the Apache Kafka Poll Mode requires the installation of the  library. This library is   distributed with Registry and must be installed PHP-rdkafka not
separately by following the library's installation instructions. PHP-rdkafka v4.0.0 or later is required.

This plugin is experimental, and interfaces may change across minor releases.

https://spaces.at.internet2.edu/display/cifer/SOR-Registry+Strawman+Write+API
https://spaces.at.internet2.edu/display/COmanage/Installing+and+Enabling+Registry+Plugins
https://github.com/arnaud-lb/php-rdkafka


Configuration

ApiSource supports three modes of operations:

Push : The System of Record sends records to ApiSource via ApiSource's API Mode
Pull Mode: ApiSource queries the System of Record via the SoR's API ( )not yet implemented
Poll : ApiSource polls an endpoint (typically a message bus) for records to process ( ) Mode implemented for Kafka on an experimental basis

All three modes may be used concurrently, so long as a single SORID space is in effect. (ie: All three modes will share the same unique key for the same 
record subject.)

ApiSource must be instantiated once per System of Record.

Push Mode

Push Mode requires the creation of an  . The specified API User will have read/write access to the ApiSource API, the endpoint of which is made API User
available via the ApiSource configuration page. It is recommended to create an  for this purpose, though any defined API User Unprivileged CO API User
may be used.

Push Mode does not support  via Job Shell or at Login. Technically, no errors will be thrown, but because Push Mode does not support Org Identity Sync
calling out to the System of Record, no updates will be made.

Pull Mode

Pull Mode requires the System of Record to offer an API with a predictable interface to specific records. In other words, given a specific SOR ID the API 
must allow for the retrieval of a specific record.

Not yet implemented.

Poll Mode

Poll Mode consumes event-oriented messages, such as those that may be placed on a Message Queue or Bus. As distinct from Pull Mode, it is typically 
not possible for a specific record to be retrieved on demand, but only when the System of Record sends out an update.

While Poll Mode can be used concurrently with Push and Pull Modes, only one messaging technology can be used for Poll Mode within a given ApiSource 
instantiation.

Because Poll Mode is dependent on updates being sent through the message system, it does not support  via Job Shell or at Login.Org Identity Sync

Polling is implemented via the , using a Job provided by ApiSource.Registry Job Shell

Job Name:   ApiSource.Poll
Job Parameters

: The ID of the API Source instance to run polling for.api_source_id
Required

: The maximum number of records to process before exiting.max
Default: 100 (Registry v4.0.2 and earlier) or 10 (Registry v4.1.0 and later)
As of Registry v4.1.0, for Apache Kafka this is the number of   that may run trying to consume messages. The number of loops
messages that may be consumed is configured by the   setting on the KafkaServer object. Thus the actual maximum Batch Size
number of messages that may be consumed is (  * ).max batch_size
This parameter may be refactored in a future minor release.

Sample Usage

./Console/Cake job ApiSource.Poll -s -c 2 --max 10 --api_source_id 5

Poll Mode (Apache Kafka)

Apache Kafka support is available as of Registry v4.0.0.  Kafka support is   and may change across minor releases.Experimental

Add a new Kafka Server, via   >   >  . On the next page, set the configuration information as provided by the Kafka CO Servers Add a New Server
administrators.

Each instantiation of ApiSource in Poll Mode requires a separate Job instance with the associated  , each of which must be api_source_id
manually configured in cron.

The ApiSource Job Shell operates independently of the     Job. This is subject to change in a Organizational Identity Source syncorgsources
future release.

https://spaces.at.internet2.edu/display/COmanage/REST+API+v1
https://spaces.at.internet2.edu/display/COmanage/Organizational+Identity+Sources#OrganizationalIdentitySources-OrganizationalIdentitySources-SyncModes
https://spaces.at.internet2.edu/display/COmanage/Organizational+Identity+Sources#OrganizationalIdentitySources-OrganizationalIdentitySources-SyncModes
https://spaces.at.internet2.edu/display/COmanage/Registry+Job+Shell
http://kafka.apache.org/
https://spaces.at.internet2.edu/display/COmanage/Organizational+Identity+Sources


Instantiate ApiSource and set   to  . Select the   created above. For Registry v4.0.x, set the Consumer Group ID and Kafka Poll Mode Apache Kafka Server
Topic as provided by the Kafka administrators. (For Registry v4.1.0 and later, these settings are configured via the Kafka Server.)

 Registry v4.0.x uses the . Registry v4.1.0 and later uses the  and batch consumption of messages.high-level consumer low-level consumer

Endpoints and Actions

Push Mode

The URL prefix for ApiSource operating in Push Mode is

https://server.org/registry/api_source/ /v1/sorPeople/ /coid sorlabel sorid

where

coid: The CO ID for this instance of ApiSource
sorlabel: SOR Label, as configured for the Organizational Identity Source (v4.1.0 and later) or ApiSource (v4.0.2 and earlier) instance
sorid: The System of Record's unique ID for the record being presented

 and  are used to find the correct instantiation of ApiSource.coid sorlabel

The following actions are supported in Push Mode:

: Remove the specified record from the set of records associated with this SoR. No body is expected.DELETE
: Obtain the current record for the specified SOR ID. The response will be a record in the same format as was .GET PUT
: Add a record for the specified SOR ID, or update an existing record. The body of the request is in the message format described below.PUT

The following HTTP Response Codes may be returned:

: An existing record was found and deleted, returned, or updated (as appropriate for the action).200
: The record was successfully stored and processed (  only).201 PUT
: The record was accepted, but further processing (and possibly administrator action) is required.202
: Unauthenticated / authorization failed.401
: The specified record does not exist (  or  only).404 DELETE GET
: An error occurred.500

Pull Mode

Not yet implemented.

Poll Mode

The endpoint is determined by the message system.

When a message is processed for an SORID that has not been seen before, the message will be processed as an add action. If the SORID has been seen 
before, the message will be processed as on update (or a delete, if the message metadata indicates such, see , below).Message Format

Message Format

PUT (Request) / GET (Response)

The message format is a JSON object with two possible members:   and .sorAttributes returnUrl

The message should be sent with a   header of  .Content-Type text/json

sorAttributes

sorAttributes is a required object whose members are from the following list of available attributes, as defined in the :TAP Attribute Dictionary

addresses*
adhoc
affiliation
dateOfBirth
department
emailAddresses*
identifiers*
managerIdentifier†
names*

 The first name found will be designated the Primary Name
organization
sponsorIdentifier†
telephoneNumbers*

https://arnaud.le-blanc.net/php-rdkafka-doc/phpdoc/class.rdkafka-kafkaconsumer.html
https://arnaud.le-blanc.net/php-rdkafka-doc/phpdoc/class.rdkafka-consumer.html
https://github.internet2.edu/api-schema/attribute-dictionary/tree/draft


title
urls*
validFrom / validThrough

*Plural attributes may have multiple values, provided via a JSON array

†See  for more information Pipeline Relationship Syncing

returnURL

returnUrl is optional, and consists of a single string containing a URL. This URL is used as a , if API Source is Petition-Specific Redirect Target
connected to a   that in turn is . Make sure the returnUrl is configured in Pipeline connected to an Enrollment Flow the Enrollment Flow's Return URL Whitelist 
configuration.

https://spaces.at.internet2.edu/display/COmanage/Registry+Pipelines#RegistryPipelines-RegistryPipelines-SyncingRelationships
https://spaces.at.internet2.edu/display/COmanage/Registry+Enrollment+Flow+Configuration#RegistryEnrollmentFlowConfiguration-RegistryEnrollmentFlowConfiguration-Petition-SpecificRedirectTargets
https://spaces.at.internet2.edu/display/COmanage/Registry+Pipelines
https://spaces.at.internet2.edu/display/COmanage/Registry+Pipelines#RegistryPipelines-RegistryPipelines-TriggeringEnrollmentFlowsFromPipelines


Sample Request Message

{ 
    "sorAttributes": {
        "names": [
            {
                "type": "official",
                "given": "Pat",
                "middle": "X",
                "family": "Lee"
            }
        ],
        "affiliation": "faculty",
        "organization": "School of Philosophy and Biopharmacology",
        "department": "Department of Metaphysics",
        "title": "Associate Professor of Metaphysical Microbiology",
        "dateOfBirth": "1990-04-25",
        "validFrom": "2019-09-01T00:00:00Z",
        "validThrough": "2020-08-31T23:59:59Z",
        "managerIdentifier": "E79725186",
        "sponsorIdentifier": "E69813130",
        "identifiers": [
            {
                "type": "national",
                "identifier": "541-00-3732"
            }
        ],
        "emailAddresses": [
            {
                "type": "personal",
                "address": "patxlee@email.nil",
                                "verified": true
            }
        ],
        "addresses": [
            {
                "type": "home",
                "streetAddress": "3593 Red Maple Drive",
                "locality": "Los Angeles",
                "region": "CA",
                "postalCode": "90046",
                "country": "US"
            }
        ],
        "telephoneNumbers": [
            {
                "type": "home",
                "number": "323-555-1208"
            }
        ],
        "urls": [
            {
                "type": "personal",
                "url": "https://metaphysics.spb.ac.nil/plee"
            }
        ],
        "adhoc": [
            {
                "tag": "flavor",
                "value": "chocolate"
            }
        ]
    },
    "returnUrl": "https://registry.myvo.org/localapps/post-enrollment?regid=12345"
}

PUT (Response)



1.  
a.  

2.  
3.  

The message format is a JSON object, currently with a single member:  , representing a list of identifiers associated with the CO Person identifiers
created by or attached to the SOR record. Additional attributes may be returned in the future.

Sample Response Message

{
    "identifiers": [
        {
            "identifier": "1049f0d5-04cc-4ad5-8ab4-b6e056227dcb",
            "type": "reference"
        },
        {
            "identifier": "pxl28",
            "type": "network"
        }
    ]
}

Poll (Apache Kafka)

The message format uses the same   object used for PUT requests and described above, with an additional  section. The expected sorAttributes meta
metadata attributes are

resource: Must be the string   sorPersonRole
version: Must be the string 1
sor: A string matching the SOR Label configured for the API Source instance
sorid: The System of Record's unique ID for the record being presented

The JSON document must be stored in the   attribute of the Kafka Message.payload

There is no response to a polled message. To send a response back to the requesting system, use a provisioner such as the  .API Provisioning Plugin

Sample Request Metadata

{
  "meta": {
    "resource":"sorPersonRole",
    "version":"1",
    "sor":"kafka",
    "sorid":"K2345987"
  },
  "sorAttributes": {
    ...
  }
}

Multiple Roles

Message Meiosis

As of Registry v4.1.0, ApiSource supports an experimental format for transferring multiple roles in a single request. In order to handle these messages, 
ApiSource converts each inbound message into multiple Org Identity Source Records, in a process referred to as . Multiple roles are Message Meiosis
conveyed using a  attribute, each of which has a unique  attribute.roles roleIdentifier

During Message Meiosis,

For each role, the  is appended to the  with a colon ( ) to create a  .roleIdentifier sorid : Compound SORID
 The Compound SORID must be unique within the source, which may be an issue if the source uses colons in its System of Record 

IDs.
The non-role attributes are copied to the message for each role.
Each Meiosized message is treated by the Org Identity Source and Pipeline infrastructure as if it were a complete, standalone message.

https://spaces.at.internet2.edu/display/COmanage/API+Provisioning+Plugin


Message Format

ApiSource puts an inbound message through Meiosis based on the presence of the  key within , which is instead specified asroles sorAttributes

dateOfBirth
emailAddresses*
identifiers*
names*

 The first name found will be designated the Primary Name
urls*
roles*

roleIdentifier
adhoc
affiliation
addresses*
department
managerIdentifier†
organization
sponsorIdentifier†
telephoneNumbers*
title
validFrom / validThrough

*Plural attributes may have multiple values, provided via a JSON array

†See  for more information Pipeline Relationship Syncing

where  is an identifier used to identify the unique role within the record.roleIdentifier

Sample Request Message

{ 
    "sorAttributes": {
        "names": [
            {
                "type": "official",
                "given": "Pat",
                "middle": "X",
                "family": "Lee"
            }
        ],
        "dateOfBirth": "1990-04-25",
        "identifiers": [
            {
                "type": "national",
                "identifier": "541-00-3732"
            }
        ],
        "emailAddresses": [
            {
                "type": "personal",
                "address": "patxlee@email.nil",
                                "verified": true
            }
        ],
        "urls": [
            {

https://spaces.at.internet2.edu/display/COmanage/Registry+Pipelines#RegistryPipelines-RegistryPipelines-SyncingRelationships


                "type": "personal",
                "url": "https://metaphysics.spb.ac.nil/plee"
            }
        ],
        "roles": [
            {
                "roleIdentifier": "R250001",
                "affiliation": "faculty",
                "organization": "School of Philosophy and Biopharmacology",
                "department": "Department of Metaphysics",
                "title": "Associate Professor of Metaphysical Microbiology",
                "validFrom": "2019-09-01T00:00:00Z",
                "validThrough": "2020-08-31T23:59:59Z",
                "managerIdentifier": "E79725186",
                "sponsorIdentifier": "E69813130",
                "addresses": [
                    {
                        "type": "home",
                        "streetAddress": "3593 Red Maple Drive",
                        "locality": "Los Angeles",
                        "region": "CA",
                        "postalCode": "90046",
                        "country": "US"
                    }
                ],
                "telephoneNumbers": [
                    {
                        "type": "home",
                        "number": "323-555-1208"
                    }
                ],"adhoc": [
                    {
                       "tag": "flavor",
                        "value": "chocolate"
                    }
                ]
            },
            {
                "roleIdentifier": "R782510",
                "affiliation": "affiliate",
                "organization": "School of Culinary Arts",
                "department": "Recipe Development",
                "title": "Consultant",
                "sponsorIdentifier": "E11109783"
             }
        ]
    },
    "returnUrl": "https://registry.myvo.org/localapps/post-enrollment?regid=12345"
}

GET

Because the original message is not stored before Meiosis,  requests will only work with the Compound SORID.GET

DELETE

DELETE requests must currently use the Compound SORID to delete roles individually.

Updating Records

Because ApiSource performs Meiosis on the inbound message before processing it, update messages need not (but may) contain all role records. 
However, because of this, omitting a role record in an update will   cause the role to be deleted. The role must be deleted using the Compound SORID, not
as described above.

Use With Bulk Load

When using Multiple Roles with , fRegistry BulkLoad Shell ollow the instructions for Linking to Organizational Identity Sources  . Use the once for each role
Compound SORID as the SORID. The   should represent the post-Meiosis message, not the original (multiple role) message.source record

https://spaces.at.internet2.edu/display/COmanage/Registry+BulkLoad+Shell


Additional Considerations

Because ApiSource "copies" attributes to create multiple records, a single ApiSource message may create multiple Org Identities. However, ApiSource will 
cache the CO Person ID created for the first role and apply it to later roles. If the Org Identity Source is connected to a Pipeline calling out to an external 
match service, the match service will therefore receive only one request per inbound message.

 If an OrgIdentity is initially created, and then a new Role is added later, the new Role should be added   the existing Role(s) in the JSON  after roles
section in order to ensure that the existing CO Person ID is correctly linked. If the new Role is processed first, a new CO Person ID may be assigned 
(depending on the Match configuration).

The implementation is likely to change in a future release, as support for Organizational Identities with multiple roles is added to the core codebase (CO-
).2215

See Also

cm_api_sources
cm_api_source_records
API Provisioning Plugin

https://todos.internet2.edu/browse/CO-2215
https://todos.internet2.edu/browse/CO-2215
https://spaces.at.internet2.edu/display/COmanage/cm_api_sources
https://spaces.at.internet2.edu/display/COmanage/cm_api_source_records
https://spaces.at.internet2.edu/display/COmanage/API+Provisioning+Plugin

	API Source

