
Grouper reporting

Wiki
Home

Grouper Release
Announcements

Grouper
Guides

Grouper Deployment
Guide

Community
Contributions

Internal Developer
Resources

In patches in Grouper 2.4 (api #61, ui #37), Grouper has a reporting capability. This will start simple and we can add more features later.

Grouper reporting use cases

High level description
Reporting Configuration
SQL Report Example
GSH Report Example

Example script writing to FILE format
Example script writing to CSV format
Mock setup of objects for development of a GSH reporting script

Internal attributes
Changes to group or folder drop down
View reports screen
Edit reports screen
Report screen
Report instance screen
Report logs screen
Report
Report emails
Report storage

Database
AWS S3
Filesystem
Generic storage info

Overall report daemon
Auditing
Screenshots
FAQ
To Do later

See Also

High level description

Configure a report on a group or folder
This report will have a cron that will run like loader jobs run
The SQL report type consists of a SQL to run in a database, generating a CSV file

Note: it is a best practice to put the SQL in a view and call the view from grouper. Keep the source in the view in source control for
versioning
The SQL report type is available in 2.5.0, 2.6.0, and 2.4.0 api #60 and ui #37

The GSH report type uses a GSH script to either output directly to the report file, or to build data rows that are converted to a CSV file
The GSH report type is available in 2.5.53 and 2.6.0

The output of the report will be encrypted and stored to storage
Users can be notified by email that the report exists
When the login they can download the most recent report

This will have Grouper reverse proxy the report from storage, unencrypt it, and deliver it to the user
Reports will be automatically deleted after 30 days or if there are more than 100 instances of a report

Reporting Configuration

You need to use a file system (if you have a shared filesystem among all grouper component JVMs), or Amazon AWS S3.

grouper.properties

You may want to check out the from November 2019. blog on Grouper Reporting

https://spaces.at.internet2.edu/display/Grouper/Grouper+Wiki+Home
https://spaces.at.internet2.edu/display/Grouper/Grouper+Wiki+Home
https://spaces.at.internet2.edu/display/Grouper/Grouper+Release+Announcements
https://spaces.at.internet2.edu/display/Grouper/Grouper+Release+Announcements
https://spaces.at.internet2.edu/display/Grouper/Grouper+Administration+Guides
https://spaces.at.internet2.edu/display/Grouper/Grouper+Administration+Guides
https://spaces.at.internet2.edu/display/Grouper/Grouper+Deployment+Guide
https://spaces.at.internet2.edu/display/Grouper/Grouper+Deployment+Guide
https://spaces.at.internet2.edu/display/Grouper/Community+Contributions
https://spaces.at.internet2.edu/display/Grouper/Community+Contributions
https://spaces.at.internet2.edu/display/GrIntDev/Grouper+Internal+Development+Home
https://spaces.at.internet2.edu/display/GrIntDev/Grouper+Internal+Development+Home
https://spaces.at.internet2.edu/display/Grouper/Grouper+reporting+use+cases
https://www.incommon.org/news/grouper-reporting-addresses-multiple-needs-even-sends-emails/?fbclid=IwAR3X6kAt0szbR_MGya5Gl7h6eDZQTqGXgiWgzifYliVFO-7ydoj7n274Omg

######################################
Grouper Reporting
######################################

folder where system objects are for reporting config
{valueType: "stem"}
reportConfig.systemFolder = $$grouper.rootStemForBuiltinObjects$$:reportConfig

if grouper reporting should be enabled
{valueType: "boolean", required: true}
grouperReporting.enable = true

grouper reporting storage# grouper reporting storage option. valid values are database, fileSystem or S3
{valueType: "string", required: true}
reporting.storage.option = database

grouper reporting file system path where reports will be stored, e.g. /opt/grouper/reports
{valueType: "string", required: false}
reporting.file.system.path =

grouper reporting s3 bucket name where the reports will be uploaded
{valueType: "string", required: false}
reporting.s3.bucket.name =

grouper reporting s3 bucket name where the reports will be uploaded, e.g. us-west-2
{valueType: "string", required: false}
reporting.s3.region =

grouper reporting s3 access key
{valueType: "string", required: false}
reporting.s3.access.key =

grouper reporting s3 secret key
{valueType: "string", required: false}
reporting.s3.secret.key =

#grouper reporting email subject
{valueType: "string"}
reporting.email.subject = Report $$reportConfigName$$ generated

#grouper reporting email body. Can use variables
{valueType: "string"}
reporting.email.body = Hello $$subjectName$$, \n\n Report $$reportConfigName$$ has been generated. Download the
report: $$reportLink$$ \n\n Thanks

For this example lets use the file system. Configure in grouper.properties

grouper reporting file system path where reports will be stored, e.g. /opt/grouper/reports
{valueType: "string", required: false}
reporting.file.system.path = d:/temp/temp/grouperReports

Make sure you have mail setup in the SMTP external system

#smtp server is a domain name or dns name. set to "testing" if you want to log instead of send (e.g. for
testing)
{valueType: "string"}
mail.smtp.server = localhost
mail.smtp.from.address = noreply@whatever.edu

Make sure you have a mailAttributeName in your person subject source

Make sure you have grouper.ui.url set in grouper.properties

#put the URL which will be used e.g. in emails to users. include the webappname at the end, and nothing after
that.
#e.g. https://server.school.edu/grouper/
{valueType: "string"}
grouper.ui.url = http://localhost:8097/grouper/

Make sure you have an encrypt.key in morphString.properties

subjectApi.source.jdbc.param.emailAttributeName.value = email

If you are using the built in subject source, you can add a user for yourself with an email address (yours), this is GSH

grouperSession = GrouperSession.startRootSession();
RegistrySubject.addOrUpdate(grouperSession, "mchyzer", "person", "Chris Hyzer", "Chris Hyzer", "mchyzer",
"Chris Hyzer - IAM architect", "your@email.address");

SQL Report Example

Open a group, add a new report

Report
name

myReport

Descri
ption

my service users

Config
type

SQL

Query SELECT gm.subject_id as SUBJECT_ID, as NAME, gm.description as DESCRIPTION FROM grouper_memberships_lw_v gmlv, gm.name
grouper_members gm WHERE gmlv.group_name = 'testB:testGroup2' AND gmlv.member_id = AND gmlv.subject_source = 'jdbc' gm.id
ORDER BY 1

Config
format

CSV

Quartz
cron

0 0 6 * * ? (run daily at 6am)

File
name

usersOfMyService_$$timestamp$$.csv

Send
email

Yes, send email when the report is ready

Allowe
d
group
id

A group with your user in it

Now get an email about the report

http://gm.name
http://gm.id

See the report

GSH Report Example

The GSH report type can have an output type of either CSV or FILE. For both types, the script will use fields from the available
gsh_builtin_gshReportRuntime variable to add data to the output. For CSV output, the script will set a header array and a list of data arrays. For FILE
output, the script will open a Writer and write arbitrary data to the character stream.

Variables available to the GSH script

Variable Java class Description

gsh_builtin_grouperSession GrouperSessi
on

session the script runs as

gsh_builtin_ownerStemName String owner stem name where template was called

gsh_builtin_ownerGroupName String owner group name where template was called

gsh_builtin_gshReportRuntime GshReportRu
ntime

container to hold important information about the run

gsh_builtin_gshReportRuntime.getOwnerGroup() Group owner group where template was called

gsh_builtin_gshReportRuntime.getOwnerStem() Stem owner stem where template was called

gsh_builtin_gshReportRuntime.
getOwnerGroupName()

String same as gsh_builtin_ownerGroupName

gsh_builtin_gshReportRuntime.
getOwnerStemName()

String same as gsh_builtin_ownerStemName

gsh_builtin_gshReportRuntime.
getGrouperReportData()

GrouperRepor
tData

container for the output file (FILE) or csv rows (CSV)

gsh_builtin_gshReportRuntime.
getGrouperReportData().getFile()

File (FILE) file object to be written to

gsh_builtin_gshReportRuntime.
getGrouperReportData().getHeaders()

List<String> (CSV) column names to appear in csv header row

gsh_builtin_gshReportRuntime.
getGrouperReportData().getData()

List<String[]> (CSV) rows of data to appear in the csv; not set by default, so must be
initialized with at least an empty list

Example script writing to FILE format

Group g = gsh_builtin_gshReportRuntime.ownerGroup
File file = gsh_builtin_gshReportRuntime.grouperReportData.file

file.withWriter('utf-8') { writer ->
 writer << ['Row', 'ID', 'UID', 'Name', 'Email'].join(",") << "\n"
 g.members.eachWithIndex { it, i ->
 writer << i+1 << ","
 writer << it.subject.getAttributeValue('employeenumber') << ","
 writer << it.subject.getAttributeValue('uid') << ","
 writer << it.subject.getAttributeValue('cn') << ","
 writer << it.subject.getAttributeValue('mail') << "\n"
 }
}

Example script writing to CSV format

Group g = gsh_builtin_gshReportRuntime.ownerGroup
GrouperReportData grouperReportData = gsh_builtin_gshReportRuntime.grouperReportData

grouperReportData.headers = ['Row', 'ID', 'UID', 'Name', 'Email']
grouperReportData.data = new ArrayList<String[]>()

g.members.eachWithIndex { it, i ->
 String[] row = [
 i+1,
 it.subject.getAttributeValue('employeenumber'),
 it.subject.getAttributeValue('uid'),
 it.subject.getAttributeValue('cn'),
 it.subject.getAttributeValue('mail'),
]

 grouperReportData.data << row
}

Mock setup of objects for development of a GSH reporting script

import edu.internet2.middleware.grouper.app.reports.GshReportRuntime
import edu.internet2.middleware.grouper.app.reports.GrouperReportData

def gs = GrouperSession.startRootSessionIfNotStarted().grouperSession

def g = GroupFinder.findByName(gs, "test:vpn:vpn_legacy_exceptions", true)
GshReportRuntime gshReportRuntime = new GshReportRuntime()
gshReportRuntime.ownerGroup = g
gshReportRuntime.ownerGroupName = g.name

GrouperReportData grouperReportData = new GrouperReportData()
gshReportRuntime.grouperReportData = grouperReportData

// (next line is for FILE output only, set to an arbitrary file instead of the autogenerated one)
grouperReportData.file = new File('/tmp/legacy_exceptions.csv')

// simulate the built-in variables
GrouperSession gsh_builtin_grouperSession = gs
GshReportRuntime gsh_builtin_gshReportRuntime = gshReportRuntime
String gsh_builtin_ownerStemName = gsh_builtin_gshReportRuntime.ownerStemName
String gsh_builtin_ownerGroupName = gsh_builtin_gshReportRuntime.ownerGroupName

/** continue from here with reporting script */

Internal attributes

The configuration will follow the same attribute structure as other Grouper modules like attestation and deprovisioning

Attribute definitions for config

Definition Assigned To Purpose Value Cardinality

reportConfigDef folder, group identify a report config marker Multi assign

reportConfigValueDef folder assignment, group assignment name/value pairs string Single assign, single valued

Attribute names for config

Name Definition Required? Value

reportConfig
Marker

reportConfig
Def

<none>

reportConfig
Type

reportConfig
ValueDef

required (SQL and blank available) Currently only SQL is available

reportConfig
Format

reportConfig
ValueDef

required (CSV and blank available) Currently only CSV is available

reportConfig
Name

reportConfig
ValueDef

required Name of report. No two reports in the same owner should have the same
name

reportConfig
Filename

reportConfig
ValueDef

required and shown for CSV type e.g. usersOfMyService_$$timestamp$$.csv
$$timestamp$$ translates to current time in this format:
yyyy_mm_dd_hh24_mi_ss

reportConfig
Description

reportConfig
ValueDef

required Textarea which describes the information in the report. Must be less than 4k

reportConfig
ViewersGrou
pId

reportConfig
ValueDef

optional GroupId of people who can view this report. Grouper admins can view any
report (blank means admin only), check if EveryEntity is in the group, then
public

reportConfig
QuartzCron

reportConfig
ValueDef

required Quartz cron-like schedule

reportConfig
SendEmail

reportConfig
ValueDef

required (default to true, no blank option available) true/false if email should be sent

reportConfig
EmailSubject

reportConfig
ValueDef

optional (default to generated subject, blank means use
generated)

subject for email (optional, will be generated from report name if blank)

reportConfig
EmailBody

reportConfig
ValueDef

optional (default to generated body, blank means use
default, this should be a textarea, on submit, convert the
newlines (/r/n, or /r, to standard \n)

optional, will be generated by a grouper default if blank

body for email, support \n for newlines, and substitute in:
$$reportConfigName$$, $$reportConfigDescription$$, $$subjectName$$
and $$reportLink$$ The link
will go to the report instance screen for this report

note: the $$reportLink$$ must be in the email template if it is not blank

reportConfig
SendEmailT
oViewers

reportConfig
ValueDef

required if reportConfigSendEmail=true, default to true, no
blank option

true/false if report viewers should get email (if reportConfigSendEmail is
true)

reportConfig
SendEmailT
oGroupId

reportConfig
ValueDef

required if reportConfigSendEmail=true and reportConfigSe
ndEmailToViewers=false

if reportConfigSendEmail is true, and reportConfigSendEmailToViewers is
false), this is the groupId where members are retrieved from, and the
subject email attribute, if not null then send

reportConfig
Query

reportConfig
ValueDef

required and shown for CSV type SQL for the report. The columns must be named in the SQL (e.g. not select
*) and generally this comes from a view

reportConfig
Enabled

reportConfig
ValueDef

default to true (required, no blank option) Use logic from loader enabled, either enable or disabled this job

Attribute definitions for instance (a report that was run)

This attribute is assigned to the same owner as the config attribute (e.g. the same group/folder)

Definition Assigned To Purpose Value Cardinality

reportInstanceDef folder, group identify a report that was run marker Multi assign

reportInstanceValueDef folder assignment, group assignment name/value pairs string Single assign, single valued

Attribute names for instance

Note: the ID is the attribute assign id of the marker (this is passed in URLs/emails etc)

Name Definition Value

reportInstanceMarker reportInstanc
eDef

<none>

reportInstanceStatus reportInstanc
eValueDef

SUCCESS means link to the report from screen, ERROR means didnt execute successfully

reportElapsedMillis reportInstanc
eValueDef

number of millis it took to generate this report

reportInstanceConfigMar
kerAssignmentId

reportInstanc
eValueDef

Attribute assign ID of the marker attribute of the config (same owner as this attribute, but there could be
many reports configured on one owner)

1.
2.

1.

2.
3.
4.
5.
6.
7.
8.
9.

1.
2.
3.

1.
2.
3.

a.
b.
c.
d.
e.
f.
g.

4.

5.

reportInstanceMillisSinc
e1970

reportInstanc
eValueDef

millis since 1970 that this report was run. This must match the timestamp in the report name and storage

reportInstanceSizeBytes reportInstanc
eValueDef

number of bytes of the unencrypted report

reportInstanceFilename reportInstanc
eValueDef

filename of report

reportInstanceFilePointer reportInstanc
eValueDef

depending on storage type, this is a pointer to the report in storage, e.g. the S3 address. note the S3
address is .csv suffix, but change to __metadata.json for instance metadata

reportInstanceDownload
Count

reportInstanc
eValueDef

number of times this report was downloaded (note update this in try/catch and a for loop so concurrency
doesnt cause problems)

reportInstanceEncryptio
nKey

reportInstanc
eValueDef

randomly generated 16 char alphanumeric encryption key (never allow display or edit of this)

reportInstanceRows reportInstanc
eValueDef

number of rows returned in report

reportInstanceEmailToS
ubjects

reportInstanc
eValueDef

source::::subjectId1, source2::::subjectId2 list for subjects who were were emailed successfully (cant be
more than 4k chars)

reportInstanceEmailToS
ubjectsError

reportInstanc
eValueDef

source::::subjectId1, source2::::subjectId2 list for subjects who were were NOT emailed successfully, dont
include g:gsa groups (cant be more than 4k chars)

Changes to group or folder drop down

Under folders or groups, in the more actions, should be "Reports", which goes to View reports screen. Note we need to harmonize this with Shilen's group
and folder reports. Should they share a menu item?

View reports screen

This is the default screen. Drop down with the following options:

View reports
Edit reports

Screen shows

For all the configured reports, see if the current user can view them (wheel group or in the reportViewers group for the report), and if so, list the
reports there, one line per report, with a link to the report page, and a link to the latest report download
If there are no reports available, display a message "There are no reports you are allowed to view"
Column for report name (clickable to report screen)
Column for if enabled or not
Column for last timestamp it was run (from most recent report instance attribute)
Column for status (SUCCESS?) (from most recent report instance attribute)
Column for number of rows in report (from most recent report instance attribute)
Column for cron schedule (from most recent report config attribute)
Column with drop down to download most recent report, view most recent report instance, report (report screen), report logs, enable
/disable (group admins or wheel only)

Edit reports screen

Only for wheel group
Can pick a report to edit or can add a new. Like the deprovisioning edit
Drop down same as view reports screen

Report screen

Can see if wheel user or in the reportViewers group for the report
Show the report name and description
Show table with most recent 100 entries with columns (from report instance attributes)

Report name (same for each row)
Timestamp (sorted descending)
Download report link
View report details link (goes to report instance screen)
Status
When the report run
How many rows in report

Show the settings in read only mode

5.

1.
2.
3.
4.
5.
6.

a.
b.
c.
d.
e.
f.
g.

1.
2.
3.
4.
5.

In right of screen have one actions drop down: download most recent report, view reports (report screen), report logs, enable/disable (group
admins or wheel only), delete report (group admins or wheel only)

Report instance screen

Clickable from Report screen or drop down in some of the report screens or from email to user
Dropdown on right of screen: Download most recent report, view reports (report screen), report logs, enable/disable (group admins or wheel only)
Show timestamp
Show the report name and description
Download link (if status SUCCESS)
Show report instance attributes

Friendly size of unencrypted report (e.g. 150kb or 1.5mb, there is a commons file utils method to generate this)
Filename
Row count
Download count
List of subject names that were emailed successfully (comma separated)
List of subject names that were emailed unsuccessfully (comma separated)
(only to wheel users) First 3 chars of encryption key (mask with commons util method with asterisks: b4W****************)

Report logs screen

Clickable from Report screen or drop down in some of the report screens
Can see screen if wheel user or in the reportViewers group for the report
Show list of most recent 100 report logs from grouper loader log table
Should be a table that looks like the grouper loader log screen
Should have exception stack if there was an error

Report

The report will take the SQL and columns and make a CSV with all the results. Chris has this logic and will commit it in the branch. This will be delivered
as a download from browser

Report emails

If reports are being configured to be emailed, then the configured or default email will be sent. Note, the actual report will not be attached in the email for
security reasons. A link to the report instance screen will be in the email.

Report storage

In 2.4 we dont want to add a new table to store files, so for people who want to use this feature the only option will be AWS S3 buckets or filesystem with
the report encrypted. We can add more storage options later

In 2.5.34+ this is stored by default in the database.

Database

Stores in grouper_file table

AWS S3

The deployer will need an AWS account, the free level might suffice

Need to configure the AWS creds in grouper.properties

You might create an IAM user or role, or have best practices, but to get started quickly do this
In the upper right click on your aws console username, "my security credentials"
Under access keys, create new access key

Configure the AWS S3 bucket location

Note the region
You can keep all the settings as the default since we dont need versions and Grouper does its own encryption
Do you not allow public access to bucket

Filesystem

Configure the path where report files will be stored

Generic storage info

1.
2.

Inside there Grouper will create "folders"

$base$/reports/YYYY/MM/DD/$someUniqueId$/$reportFilename$.csv.encrypt

$groupName$ is the group system name
$groupId$ is the group UUID
$reportInstanceId$ is the attribute assign id of the marker for the instance of the report
This is the encrypted CSV report

$base$/reports/YYYY/MM/DD/$someUniqueId$/$reportFilename$__metadata.json

This is the JSON of the report instance attribute values
Do NOT include the encryption key
This exists so we can see metadata about each report, e.g. size, without downloading it

Report encryption

16 char alphanumeric encryption key will be generated for each report
Use the rijndael algorithm like password encryption

To delete a report instance, delete the metadata and report data from storage. If not it will be deleted eventually with a clean up daemon

When a report is deleted, delete all the metadata and report data from storage. If not it will be deleted eventually with a clean up daemon

There are no direct links to reports, and they are encrypted anyways. The only way to download reports is through the Grouper UI (or API), by authorized
users. This is a reverse proxy to the report storage.

Overall report daemon

The overall report daemon should go through storage, and

Look for reports that have more than 100 instances, and delete the older ones (reports and metadata)
Look for reports older than 30 days and delete (reports and metadata)

Auditing

Audits should be added for reports creation/editing/downloading. No audits for emails sent. These audits should be linked to the group or folder where the
report is configured

Screenshots

A new item "Reports" is available in More actions dropdown.

Grouper admins can add new reports as shown in the screenshot below

The screenshot below shows the existing reports.

For each report config, a few actions are available as shown in the screenshot below

1.
a.

2.
a.

b.

A report can be downloaded from the report instance page as shown in the screenshot below

FAQ

As a grouper admin, how do I get the correct SQL?
We will publish a lot of examples and increase the number of views Grouper has

Can I join to external person tables to get extra attributes
Absolutely, if you can ETL the data to your grouper database or maybe join over DB link then you will have extra attributes. If people
need LDAP attributes we can discuss that
Note: columns in the report could also be group memberships (e.g. enrolled in MFA? enrolled in Duo push? required to be in MFA? etc)

To Do later

Add entity relationship diagram on wiki to help with making queries
Add ability to use SCP to store reports
Add ability to use SCP to send reports
Add ability to store reports in box folder
Errors in report should be logged and throw error but maybe also store error in txt report (not sent out or available except to admins)
Add diagnostics to test that a report is setup correctly
Add paging to report instance list
Configure how long reports are stored
Screen in a user's subject screen that shows all the reports they have access to
Centralized report dashboard
Have a config option to "run now" (allows report viewers to run now)

This would send a message to a daemon to run so it doesnt run in the UI
Like Loader "run now"

Allow another report type which runs off membership list (not straight SQL)
Allow non admins to configure?
Allow more columns to be added (join other database tables if allowed)

Allow reports from GSH / java?
Allow reports from WS as user
Add another output type for JASPER report (PDF, etc)
Support excel
Add ability to display a CSV in the JSP in an HTML table

Add metadata to make it clickable?
Allow fields to be added from an LDAP filter
Add the daily Grouper report to run like this (dont email)
Email batching per user (user gets a weekly digest about their reports)?
In another pass we could create a report based on loading/provisioning.
On the Daemons job screen, show user friendly names for jobs (pull grouper object name from id and show under the report job id)

See Also

Grouper Report showing summary of your installation

Grouper Reporting Blog

https://spaces.at.internet2.edu/display/Grouper/Grouper+overall+summary+administrative+report
https://www.incommon.org/news/grouper-reporting-addresses-multiple-needs-even-sends-emails/

	Grouper reporting

