
Iterating Large Datasets
When processing large datasets, it is important to consider performance. In particular,

The process must complete within a typical web transaction. If the process takes more than 30 seconds or so, it should be implemented as a Job
 and be processed by the .Plugin Registry Job Shell

Large datasets should not be fully loaded into memory at once (eg: by using a), as a given server may not be able to handle the find('all')
full dataset, or may suffer performance degradation. Use the instead.PaginatedSqlIterator

PaginatedSqlterator

Available from Registry v3.3.0, the PaginatedSqlIterator is a COmanage class implementing the . It paginates over a Cake model, PHP Iterator interface
internally loading a subset of the full results in order to optimize memory usage. It uses Keyset Pagination in order to guarantee a complete iteration over
multiple queries. Since Keyset Pagination is based on the field, if new records are added during pagination, they will become available when the id
iteration approaches the end of the results.

To use the PaginatedSqlIterator, instantiate it with the Model to query, along with , , and parameters as appropriate. Then simply conditions fields contains
use the iterator in a loop.foreach()

The iterator can also obtain a record count for progress calculation purposes. For performance reasons, the record count is only updated when explicitly
asked.

Registry v3/v4

App::uses("PaginatedSqlIterator", "Lib");

class myClass {
 public function doSomething() {
 $iterator = new PaginatedSqlIterator(
 // Model to query
 'CoPerson',
 // Condition
 array('CoPerson.co_id' => $coId),
 // Fields, or null to retrieve all fields
 array('CoPerson.id', 'CoPerson.status'),
 // Contains for associated models, or null
 array('EmailAddress')
);

 // Initial record count
 $total = $iterator->count();
 $i = 0;

 foreach($iterator as $k => $v) {
 // Do something for this particular record

 ...

 // Every 1000 records, refresh the count just in case new records have been added.
 // Note this is for informational purposes for the calling code *only*, and is not
 // required. The iterator will correctly retrieve subsequently added records
 // regardless of whether or not count() is called.
 if($i % 1000 == 0) {
 $total = $iterator->count(true);
 }
 }
 }
}

https://spaces.at.internet2.edu/display/COmanage/Job+Plugins
https://spaces.at.internet2.edu/display/COmanage/Job+Plugins
https://spaces.at.internet2.edu/display/COmanage/Registry+Job+Shell
https://www.php.net/manual/en/class.iterator.php

Registry v5+

use App\Lib\Util\PaginatedSqlIterator;

class myClass {
 public function doSomething() {
 $iterator = new PaginatedSqlIterator(
 // Model to query
 $this->People->getTarget(),
 // Conditions
 ['co_id' => $coId]
);

 // Initial record count
 $total = $iterator->count();
 $i = 0;

 foreach($iterator as $k => $v) {
 // Do something for this particular record

 ...

 // Every 1000 records, refresh the count just in case new records have been added.
 // Note this is for informational purposes for the calling code *only*, and is not
 // required. The iterator will correctly retrieve subsequently added records
 // regardless of whether or not count() is called.
 if($i % 1000 == 0) {
 $total = $iterator->count(true);
 }
 }
 }
}

	Iterating Large Datasets

