
Hooks POC (Proof of concept)

Wiki
Home

Grouper Release
Announcements

Grouper
Guides

Grouper Deployment
Guide

Community
Contributions

Internal Developer
Resources

Hooks Proof of Concept

Hooks Introduction
Getting started with hooks

 - Assign a Unix id to each new groupHooks Example

This document is about a proof of concept on hooks for a group change and a membership change.

The current progress is a working unit test for each, and a Grouper UI example for a group change (member change is in progress).

Grouper UI group example

I added a hook to the Grouper UI which is a veto hook which will not allow a group to be created which is not in the "penn" folder (which is a subfolder of
root).

To implement this, it requires a group hook class:

/*
 * @author mchyzer
 * $Id: GroupHooksImplExample.java,v 1.1.2.1 2008/06/11 06:19:38 mchyzer Exp $
 */
package edu.internet2.middleware.grouper.ui.hooks;

import org.apache.commons.lang.StringUtils;

import edu.internet2.middleware.grouper.GrouperConfig;
import edu.internet2.middleware.grouper.hooks.GroupHooks;
import edu.internet2.middleware.grouper.hooks.beans.HooksGroupPreInsertBean;
import edu.internet2.middleware.grouper.hooks.HookVeto;
import edu.internet2.middleware.grouper.internal.dao.GroupDAO;

/**
 * test implementation of group hooks for test
 */
public class GroupHooksImplExample extends GroupHooks {

 /**
 * @see edu.internet2.middleware.grouper.hooks.GroupHooks#groupPreInsert(edu.internet2.middleware.grouper.
hooks.beans.HooksGroupPreInsertBean)
 */
 @Override
 public void groupPreInsert(HooksGroupPreInsertBean preInsertBean) {

 GroupDAO groupDAO = preInsertBean.getGroupDao();
 String name = StringUtils.defaultString((String)groupDAO.getAttributes().get(GrouperConfig.ATTR_NAME));
 if (!name.startsWith("penn:")) {
 throw new HookVeto("hook.veto.group.name.prefix", "group must be in the 'penn' top level folder");
 }
 }

}

 And it requires a configuration in the grouper.properties:

#implement edu.internet2.middleware.grouper.hooks.GroupHooks
hooks.group.class=edu.internet2.middleware.grouper.ui.hooks.GroupHooksImplExample

 The result when trying to add a group not in that folder, is:

https://spaces.at.internet2.edu/display/Grouper/Grouper+Wiki+Home
https://spaces.at.internet2.edu/display/Grouper/Grouper+Wiki+Home
https://spaces.at.internet2.edu/display/Grouper/Grouper+Release+Announcements
https://spaces.at.internet2.edu/display/Grouper/Grouper+Release+Announcements
https://spaces.at.internet2.edu/display/Grouper/Grouper+Administration+Guides
https://spaces.at.internet2.edu/display/Grouper/Grouper+Administration+Guides
https://spaces.at.internet2.edu/display/Grouper/Grouper+Deployment+Guide
https://spaces.at.internet2.edu/display/Grouper/Grouper+Deployment+Guide
https://spaces.at.internet2.edu/display/Grouper/Community+Contributions
https://spaces.at.internet2.edu/display/Grouper/Community+Contributions
https://spaces.at.internet2.edu/display/GrIntDev/Grouper+Internal+Development+Home
https://spaces.at.internet2.edu/display/GrIntDev/Grouper+Internal+Development+Home
https://spaces.at.internet2.edu/display/Grouper/Hooks
https://spaces.at.internet2.edu/pages/viewpage.action?pageId=10060033
https://spaces.at.internet2.edu/display/Grouper/Getting+started+with+hooks2

 Grouper UI membership example

 I added a hook to the Grouper UI (unfinished... was getting too fancy) for a membership veto that if the group type is grouperLoader, do not allow group
memberships. However, if the user is a wheel group user, then allow it but put a warning on screen

Here is the starting point for the Java:

/*
 * @author mchyzer
 * $Id: MembershipHooksImplExample.java,v 1.1.2.1 2008/06/11 06:19:38 mchyzer Exp $
 */
package edu.internet2.middleware.grouper.ui.hooks;

import edu.internet2.middleware.grouper.Group;
import edu.internet2.middleware.grouper.GroupType;
import edu.internet2.middleware.grouper.GroupTypeFinder;
import edu.internet2.middleware.grouper.SchemaException;
import edu.internet2.middleware.grouper.hooks.MembershipHooks;
import edu.internet2.middleware.grouper.hooks.beans.GrouperBuiltinContextType;
import edu.internet2.middleware.grouper.hooks.beans.GrouperContextType;
import edu.internet2.middleware.grouper.hooks.beans.HooksContext;
import edu.internet2.middleware.grouper.hooks.beans.HooksMembershipPreAddMemberBean;
import edu.internet2.middleware.grouper.hooks.HookVeto;

/**
 * test implementation of group hooks for test
 */
public class MembershipHooksImplExample extends MembershipHooks {

 /**
 * @see edu.internet2.middleware.grouper.hooks.MembershipHooks#membershipPreAddMember(edu.internet2.
middleware.grouper.hooks.beans.HooksMembershipPreAddMemberBean)
 */
 @Override
 public void membershipPreAddMember(HooksMembershipPreAddMemberBean preAddMemberBean) {
 HooksContext hooksContext = preAddMemberBean.getHooksContext();
 GrouperContextType grouperContextType = hooksContext.getGrouperContextType();

 //only care about this if not grouper loader
 if (!grouperContextType.equals(GrouperBuiltinContextType.GROUPER_LOADER)) {

 //if the act as user is is in the wheel group, then just admonish
 if (hooksContext.isSubjectActAsInGroup("penn:etc:sysAdminGroup")) {

 //add warning to system

 } else {

 Group group = preAddMemberBean.getGroup();
 GroupType groupType = null;
 try {
 groupType = GroupTypeFinder.find("grouperLoader");
 } catch (SchemaException se) {
 throw new RuntimeException(se);
 }
 if (group.hasType(groupType)) {
 throw new HookVeto("hook.veto.loader.membership", "the membership of this group is automatically
managed and does not permit manual changes");
 }

 }

 }
 }

}

 Here is the grouper.properties config:

#implement edu.internet2.middleware.grouper.hooks.MembershipHooks
hooks.membership.class=edu.internet2.middleware.grouper.ui.hooks.MembershipHooksImplExample

1.

2.

3.

 No screen shot yet

Issues

 Everything went pretty smoothly, but...

To implement a hook, it will require some understanding about Grouper. We should post a bunch of examples. The problem is we have business
objects, data transfer objects, and data access objects. Sometimes logic goes through any of these paths. So I added hooks to the data access
layer (layer on top of hibernate) so that all operations can be hooked. Sometimes there will be a reference to the business object (e.g. Group),
but it doesnt really make sense in some cases (like on an insert, there is no group uuid yet, so the Group object is not created yet, and even if it
were, most methods would be invalid).
On memberships, the DAO hook will probably not be the useful one. Information like group name or subject id is not even available, it would
have to be queried in a lot of cases. In some cases it is known, but it is weird to have it there sometimes and not others
I added a high level membership hook (addMember) which will give the information about what the group name is, subjectId, etc. This is most
likely the one that can be used for veto operations. The low level one would most likely be used for auditing. The weird thing about the
addMember hook is that some of the objects are business objects, and some are DTOs (see the BaseMemberOf object which encapsulates one
member addition). I think people will figure it out... but for the record, I'm not completely bought in to the necessity of having so many data
layers.

Implementation of grouper code details

 This is implemented in a 1.4 hooks branch in cvs.

Here is the start of a (you override this to add a hook)groups hook class
Here is the start of a (notice high and low level hook methods)membership hook class
All DB calls have been refactored to go through grouper's HibernateSession API. The transaction implementation in 1.3 brought us more than
halfway there, and this seals the deal. The HibernateSession API will allow events to be registered on each hibernate action in a safe way so that
the transaction can still be used (differentiates from the built in hibernate interceptors and I think events though events are not documented well)

e.g. the delete and load methods are just wrappers around the ones in hibernate of the same name. ByObject just separates up the namespace a bit
(there are also ByHql, and ByCriteria)

HibernateSession.callbackHibernateSession(GrouperTransactionType.READ_WRITE_OR_USE_EXISTING,
 new HibernateHandler() {

 public Object callback(HibernateSession hibernateSession) {
 ByObject byObject = hibernateSession.byObject();
 byObject.delete(byObject.load(Hib3GrouperSessionDAO.class, _s.getId()));
 return null;
 }

 });

* Each hook will have (these arent finished by any means, but look at for decent example). This is to encapsulate the params its own bean add member
passed to the hook (and to facilitate an easy way to get data back from a hook if needbe). This way if any params change, existing implementors will be
less likely to have to change their code

Notice the reference in the hook beans to the . This holds information about the current user, and gives utility methods (e.g. is hook context bean
the current user in a certain group). This bean also holds attributes which can be set by the current application. e.g. the UI and WS might give a
reference to the HttpServletRequest. These attributes can be set as threadsafe or not, which means when the asynchronous callback is called,
all the data will be handled correctly (e.g. in a new thread there is no HttpServletRequest object since that is a weak reference and the request
will be over before thread is)
For vetos, there is for various types, and it indicates which type of veto it is (set automatically if not manually). This is going to one exception
require a little bit of work on the implementors (e.g. WS, UI, etc) to handle the vetos gracefully. In the UI it was a matter of adding this code (the
three lines starting with catch HookVeto). Note this will have to be done in all places where the API is used if it cant be done centrally (hopefully it
can be added to filter or something...).

http://anoncvs.internet2.edu/cgi-bin/viewvc.cgi/grouper/src/grouper/edu/internet2/middleware/grouper/hooks/GroupHooks.java?revision=1.1.2.1&root=I2MI&view=markup&pathrev=GROUPER_1_4_HOOKS
http://anoncvs.internet2.edu/cgi-bin/viewvc.cgi/grouper/src/grouper/edu/internet2/middleware/grouper/hooks/MembershipHooks.java?root=I2MI&view=markup&pathrev=GROUPER_1_4_HOOKS
http://anoncvs.internet2.edu/cgi-bin/viewvc.cgi/grouper/src/grouper/edu/internet2/middleware/grouper/hooks/beans/?root=I2MI&pathrev=GROUPER_1_4_HOOKS
http://anoncvs.internet2.edu/cgi-bin/viewvc.cgi/grouper/src/grouper/edu/internet2/middleware/grouper/hooks/beans/HooksMembershipPreAddMemberBean.java?root=I2MI&view=markup&pathrev=GROUPER_1_4_HOOKS
http://anoncvs.internet2.edu/cgi-bin/viewvc.cgi/grouper/src/grouper/edu/internet2/middleware/grouper/hooks/beans/HooksContext.java?root=I2MI&view=markup&pathrev=GROUPER_1_4_HOOKS
http://anoncvs.internet2.edu/cgi-bin/viewvc.cgi/grouper/src/grouper/edu/internet2/middleware/grouper/hooks/HookVeto.java?root=I2MI&view=markup

try{
 group = parent.addChildGroup(extension,displayExtension);

} catch(HookVeto hookVeto) {

 //this action was vetoed, put explanation on screen, and go back
 Message.addVetoMessageToScreen(request, hookVeto);
 return mapping.findForward(FORWARD_CreateAgain);

} catch(GroupAddException e) {
 String name = parent.getName() + GrouperHelper.HIER_DELIM + extension;
 request.setAttribute("message", new Message(
 "groups.message.error.add-problem",new String[] {e.getMessage()}, true));
 return mapping.findForward(FORWARD_CreateAgain);
}

* There was an issue of setters affecting the API, and I think we can fix that. e.g. for group I added a save() method which needs to now be called after
setting the description, name, etc. However, there are methods which arent affected (e.g. Grouper.addMember() does not require a save). Only javabean
setters.

Note that in the UI you can specify a message in the nav.properties for each hook veto, or just use the standard one as a default to reduce the
number of steps required to get working...
Its pretty easy/lightweight to add a hook invocation to the grouper code (I will be adding these)... e.g. here is the one for the addMember:

//see if there is a hook class
MembershipHooks membershipHooks = (MembershipHooks)GrouperHookType.MEMBERSHIP.hooksInstance();

if (membershipHooks != null) {
 HooksMembershipPreAddMemberBean hooksMembershipPreUpdateHighLevelBean =
 new HooksMembershipPreAddMemberBean(new HooksContext(), mof);

 membershipHooks.membershipPreAddMember(hooksMembershipPreUpdateHighLevelBean);
}

* For the low level hooks, the implementation is similar but even easier (since it is central)... each DAO implements this , so those methods just interface
need to be implemented. e.g. in Hib3GroupDAO

/**
 * @see edu.internet2.middleware.grouper.internal.dao.hib3.Hib3DAO#onPreSave(edu.internet2.middleware.grouper.
hibernate.HibernateSession)
 */
 @Override
 public void onPreSave(HibernateSession hibernateSession) {
 super.onPreSave(hibernateSession);

 //see if there is a hook class
 GroupHooks groupHooks = (GroupHooks)GrouperHookType.GROUP.hooksInstance();

 if (groupHooks != null) {
 HooksGroupPreInsertBean hooksGroupPreInsertBean = new HooksGroupPreInsertBean(new HooksContext(), this);
 groupHooks.groupPreInsert(hooksGroupPreInsertBean);
 }

 }

This will kick in wherever a group is saved

Group / member hooks are , and all existing unit tests still passunit tested
sdf

http://anoncvs.internet2.edu/cgi-bin/viewvc.cgi/grouper/src/grouper/edu/internet2/middleware/grouper/hibernate/HibGrouperLifecycle.java?root=I2MI&view=markup&pathrev=GROUPER_1_4_HOOKS
http://anoncvs.internet2.edu/cgi-bin/viewvc.cgi/grouper/src/test/edu/internet2/middleware/grouper/hooks/?root=I2MI&pathrev=GROUPER_1_4_HOOKS

	Hooks POC (Proof of concept)

