
Subject API

Wiki
Home

Grouper Release
Announcements

Grouper
Guides

Grouper Deployment
Guide

Community
Contributions

Internal Developer
Resources

The Subject API

Note: in Grouper 2.3+ you should use the subject.properties not source.xml

The Subject API is used to integrate a java application with a site's existing Identity Management operations (see). It enables any architectural diagram
type of object whose identity is being managed - person, group, application, computer, etc. - to be presented to that application without requiring the
application to be specifically designed for particular object types or with knowledge of how those objects are stored and represented. Those details form
the configuration of the Subject API.

Figure 1 (below) illustrates the general role of the Subject API in the interaction between an application and a site's Identity Management infrastructure.
There are two parts to the Subject API: the Source interface and the Subject interface. An application uses the Source interface to search for and select
Subjects from back-end stores, which are presented as abstracted, flat Subject objects via the Subject interface.

Figure 1: Subject API Interaction Model

Grouper local entities
Grouper subject filter and attribute decorator
LDAP Subject API example
Member search and sort columns
Migrating from the Grouper JDBC subject source to the JDBC2 subject source
subject-0.2.1-doc
subject-0.3.1-doc
subject-1.0-doc
Subject API search filter by status
Subject API security by realm
Subject Identifier column in member table

Debugging

Run the Subject API diagnostics from GSH. Also use the Subject API diagnostics in "misc" in the UI (if Grouper starts... if there is a subject API problem it
is severe for Grouper).

https://spaces.at.internet2.edu/display/Grouper/Grouper+Wiki+Home
https://spaces.at.internet2.edu/display/Grouper/Grouper+Wiki+Home
https://spaces.at.internet2.edu/display/Grouper/Grouper+Release+Announcements
https://spaces.at.internet2.edu/display/Grouper/Grouper+Release+Announcements
https://spaces.at.internet2.edu/display/Grouper/Grouper+Administration+Guides
https://spaces.at.internet2.edu/display/Grouper/Grouper+Administration+Guides
https://spaces.at.internet2.edu/display/Grouper/Grouper+Deployment+Guide
https://spaces.at.internet2.edu/display/Grouper/Grouper+Deployment+Guide
https://spaces.at.internet2.edu/display/Grouper/Community+Contributions
https://spaces.at.internet2.edu/display/Grouper/Community+Contributions
https://spaces.at.internet2.edu/display/GrIntDev/Grouper+Internal+Development+Home
https://spaces.at.internet2.edu/display/GrIntDev/Grouper+Internal+Development+Home
https://spaces.at.internet2.edu/display/Grouper/Grouper+sources.xml+conversion+to+subject.properties
https://spaces.at.internet2.edu/download/attachments/14517677/subjectAPIinGrouperDiagram.tiff?version=1&modificationDate=1333885948326&api=v2
https://spaces.at.internet2.edu/display/Grouper/Grouper+local+entities
https://spaces.at.internet2.edu/display/Grouper/Grouper+subject+filter+and+attribute+decorator
https://spaces.at.internet2.edu/display/Grouper/LDAP+Subject+API+example
https://spaces.at.internet2.edu/display/Grouper/Member+search+and+sort+columns
https://spaces.at.internet2.edu/display/Grouper/Migrating+from+the+Grouper+JDBC+subject+source+to+the+JDBC2+subject+source
https://spaces.at.internet2.edu/display/Grouper/subject-0.2.1-doc
https://spaces.at.internet2.edu/display/Grouper/subject-0.3.1-doc
https://spaces.at.internet2.edu/display/Grouper/subject-1.0-doc
https://spaces.at.internet2.edu/display/Grouper/Subject+API+search+filter+by+status
https://spaces.at.internet2.edu/display/Grouper/Subject+API+security+by+realm
https://spaces.at.internet2.edu/display/Grouper/Subject+Identifier+column+in+member+table

GrouperSession.startRootSession();
new edu.internet2.middleware.grouper.grouperUi.serviceLogic.SubjectSourceDiagnostics().assignSourceId
("SMUPerson_DEV").assignSubjectId("empl1").assignSubjectIdentifier("netid@school.edu").assignSearchString("em").
subjectSourceDiagnosticsFromGsh()
===>
SUCCESS: Found subject by id in 37ms: 'empl1'
 with SubjectFinder.findByIdAndSource("empl1", "SMUPerson_DEV", false)
SUCCESS: Subject id in returned subject matches the subject id searched for: 'empl1'
WARNING: No subject found by identifier in 14ms: 'netid@school.edu'
 with SubjectFinder.findByIdentifierAndSource("netid@school.edu", "SMUPerson_DEV", false)

Note, to debug your SubjectAPI configuration, set this in the log4j.properties.

log4j.logger.edu.internet2.middleware.subject.provider = DEBUG
log4j.logger.edu.vt.middleware.ldap = DEBUG

If you are using a JDBC source, you can use the p6spy sql driver, set the spy.properties to specify the underlying driver and the log file name (in 2.5 we
need to revisit this)

Number of sources

Decide how many sources you need. It should be the minimal number that you can do. For people, it should be one. If you dont have one single source,
consider working on that initiative. Having multiple subjects in Grouper that represent the same person will lead to problems (e.g. seeing what someone
has access to). You might end up with a source for people and a source for service principals.

Choosing Identifiers for Subjects

Identifiers and their management can get complicated. They can be revoked or not, re-assigned or not, lucent or opaque, etc. Depending on such
characteristics, a given identifier might be a good or bad choice to use in the context of managing the identified subject's group memberships.

For example, a username is often lucent - easily remembered by the person to whom it is associated. But it may also be revokable, meaning that it no
longer refers to that person (perhaps they have a new one), or even re-assignable, meaning that it might refer to some other person at a later time. If a
username is used to record membership, username changes must trigger corresponding membership changes. A username is better suited to
authentication than it is to indicating membership.

On the other hand, an opaque registryID (machine, not human, readable) that never changes is great for membership, but lousy for authentication - it
might not even be known by the person to whom it is associated. How would I identify myself to Grouper if I wished to opt-in to a list or manage a group?

Grouper accommodates subject identifier issues in two ways. First, it maintains UUIDs for every subject and group within the Groups Registry. These are
never exposed by the UI, but are associated with externally supplied subject identifiers within the Groups Registry (in the grouper_members table). This
approach allows the identifier associated with a given subject to be changed without any need to change actual memberships.

Second, by relying on the Subject API, Grouper is able to lookup subjects that are presented with an identifier in one namespace and obtain identifiers in
other namespaces for that subject. That means that it can translate a username into a registryID, for example. So, when a user authenticates to an
application using the Grouper API, that application can use the Subject API to fetch an identifier for the person chosen by the site for use in memberships.
Similarly, when a membership in the Groups Registry is to be expressed elsewhere, the identifier used for group members can be translated by a
provisioning connector by use of the Subject API into one that is suitable in the provisioned context.

Subject ID: should be unchangeable, unrevokable. Usually this an opaque id (number or uuid etc). The source that a subject is associated with also
should not change.

Subject Identifier: anything that can refer to a subject uniquely. Usually these are netIds, eppns, etc.

It would be nice if subject id's and identifiers are unique across sources, though this is not required.

You should not have the same subject in more than one source.

Subjects should be resolvable for as long as you want users to be able to search for them or view them on the UI. It is possible for subjects to not be
active in which case they are not searchable, but still be resolvable so they can be shown in the UI in auditing.

Examples

Penn JDBC2 example

Search & Selection Methods

https://spaces.at.internet2.edu/display/Grouper/Penn+subject+source+JDBC2+example

The Source interface provides three principal methods of searching for and selecting Subjects. These methods are used in the Grouper API, and are
exposed in the UI and WS.

Method Description

getSubject Retrieve a specific subject from a specific source by its SubjectId.

getSubjectByIdentifier Retrieve a specific subject by unique match against one or more configured .identifying attributes

search List all subjects meeting a given search criterion.

Deployers supply back-end specific search & selection statements for each of these three methods that determine 1) when a Subject matches each search
criterion and 2) which of its attributes will be presented to the calling application. Callers need only persist a reference to the sourceId and subjectId of
Subjects to be able to fully instantiate them at any time. Various methods in the Subject interface provide access to these identifiers and other attributes of
each Subject.

The getSubject() method is used by the application to instantiate a Subject object from its persisted subject reference data (subjectId and sourceId). For
example, the Grouper UI uses getSubject() to display the name each member of a group.

The getSubjectByIdentifier() method is used to enable the application to locate a unique subject by reference to any of its identifying attributes. For
example, consider a site that manages both netIds and registryIds for its users, and suppose they choose to use registryId as their subjectId. When a user
logs in with their netId, the application uses getSubjectByIdentifier() to locate and instantiate a Subject object for the user from the user's netId.

The search() method is used by a User Interface application to allow a human to search for and list subjects using familiar attributes like name parts,
departments, etc. For example, to grant a person a privilege, the Signet UI first does a search() using the user's specified search term, displays a list of the
names and descriptions of the matching subjects, and enables the UI user to select one.

There are attributes that need to be configured for a subject in addition to subjectId:

name: This is generally the first and last name for a subject. If this is private data and you dont want to list it, you can use a netId or something to
help differentiate the subject from other subjects. Worst case, subjectId
description: This should be something that is standalone to show information about the subject when a list is displayed to help the user select the
correct subject. This is the description attribute at Penn

Chris Hyzer (mchyzer, 10021368) (active) Staff - Isc-applications & Information Services - Application
Architect (also: Alumni)

sdf

The Subject API in Grouper Architecture

Figure 2: Subject API

Documentation

Subject API v0.3.1

Subject API v0.2.1

Subject API v1.0

See Also

Subject API Diagnostics in UI

LDAP Subject API Example

https://spaces.at.internet2.edu/display/Grouper/subject-0.3.1-doc
https://spaces.at.internet2.edu/display/Grouper/subject-0.2.1-doc
https://spaces.at.internet2.edu/display/Grouper/subject-1.0-doc
https://spaces.at.internet2.edu/display/Grouper/Grouper+UI+-+subject+API+diagnostics
https://spaces.at.internet2.edu/display/Grouper/LDAP+Subject+API+example

	Subject API

