
REST API v2

About the REST API
Authentication

Adding a New API User
Object Formats
Timezones and Timestamps
Foreign Keys
Frozen Attributes
Request Formats

Request Headers
Character Sets

Response Formats
Response Metadata
Record Metadata
Pagination

Standard API Operations (CRUD)
Add

Request Format
Response Format
Example: Add Two New COs

Delete
Request Format
Response Format

Edit
Request Format
Response Format
Example: Update CO

View (one)
Request Format

Response Format
View (all)

Request Format
Response Format

Example: Obtain COs, Paginated
API Reference

About the REST API

The Registry Core REST API, documented here, is designed to allow fine grained resource access to the Registry database. In other words, the REST API
interfaces align more or less with the objects stored within, and not to "higher level" abstractions. Note that some Core APIs are provided by Plugins, some
of which may need to be enabled in order to be used. The Core REST API is not optimized for bulk transactions. A better approach for bulk transactions is
to use .External Identity Sources

The API is available at .https://server/registry/api/v2/

In addition, higher level APIs are provided, usually by Plugins. These APIs provide the ability to execute function oriented actions. For more information,
see the API specific documentation:

: Provides an External Identity Source interface to load data from upstream data sourcesAPI Source

Authentication

The REST client is authenticated via a simple user/password pair transmitted over HTTPS as part of a transaction. More sophisticated basic auth
authentication mechanisms, such as delegated SAML assertions, may be supported in the future.

Passwords are generated as associated with each API User, as described below.API Keys

Adding a New API User

There are three types of API Users:

Platform API Users: API Users created within the COmanage CO are given full access to the API, across all COs.
Privileged CO API Users: API Users created within any other CO may be designated as , in which case they will have full access to Privileged
the API within their CO.
Unprivileged CO API Users: API Users not designated as Privileged will not have any access to the API by default, but may be granted specific
access where supported, for example within a specific plugin.

This document applies to COmanage Registry version 5.0.0 and later. For earlier versions, see .REST API v1

https://spaces.at.internet2.edu/display/COmanage/Registry+PE+External+Identity+Sources
https://server/registry/api/v2/
https://spaces.at.internet2.edu/display/COmanage/API+Source+Plugin
http://tools.ietf.org/html/rfc2617
https://spaces.at.internet2.edu/display/COmanage/REST+API+v1

API Users can be managed by a CO Administrator via >> >> . Platform API Users are created the same way, via the CO Configuration API Users
COmanage CO. API Users can also be managed via the .API User API

API Users must have usernames prefixed with the name of the CO, followed by a dot. For example: MyCO.apiuser

Self-selected passwords are not supported for API Users. Instead, after the API User is created an API Key may be randomly generated. The API Key will
be displayed once after generation, but is then hashed for internal storage and is unrecoverable. A new API Key can be generated if needed.

It is also possible to attach validity dates to API Users, as well as to constrain access to specific IP Addresses (via regular expressions). Note there is no
current reporting or notification mechanism to indicate the approach of an API User's expiration.

Object Formats

v2 of the API only supports JSON for request and response payloads. XML is no longer supported. The is no longer supported.VOOT API

The requested object format is no longer specified as an extension on the URL. Instead, all requests must include an header of Accept application
./json

Timezones and Timestamps

All times processed (inbound and outbound) via the REST API are in UTC (). For more information on timezones, see .AR-GMR-4 Registry Timezones

Timestamps are returned in format (with no timezone indicator).YYYY-MM-DDTHH:MM:SS

Foreign Keys

In general, foreign keys cannot be updated using the REST API to move objects across COs. For example, cannot be updated after it CoPerson:co_id
is set.

Frozen Attributes

The REST API can be used to mark an attribute as (by sending), but once an attribute is frozen it can no longer be directly updated frozen frozen: true
(and the REST API will return a). There is not currently a mechanism to unfreeze attributes via the REST API, this must be done via 401 Unauthorized
the frontend.

Request Formats

Requests are provided as an object named for the appropriate model, and an object (for Update requests) or a list of objects (for Add requests) holding
model specific attributes (excluding metadata and).id

Requests with a JSON body must be sent with a header of .Content-Type application/json

Request Headers

As described above, any request that provides a JSON body (typically or) must include a header. Any request that receives a PUT POST Content-Type
JSON body (including) must include an header. If either is omitted when required, SecurityComponent errors will result and the request will GET Accept
be blackholed.

Content-Type: application/json
Accept: application/json

Character Sets

In general, COmanage supports Unicode, and that includes the REST API. In general, as long as every component of the installation is set up for Unicode
(PHP, Apache, the database server) everything should just work. If specifically using a of , it Content-Type application/json; charset=utf-8
may be necessary to use JSON-style encoding of non-ASCII characters. \u####

Response Formats

Response Metadata

Each response includes an object called with metadata about the response. Response metadata attributes include:responseMeta

resource: The name of the resource (or object) being returned
version: API version, currently " "2

https://spaces.at.internet2.edu/display/COmanage/API+User+API+v2
https://spaces.at.internet2.edu/display/COmanage/VOOT+API
https://spaces.at.internet2.edu/display/COmanage/Registry+Application+Rules
https://spaces.at.internet2.edu/display/COmanage/Registry+Timezones
#

In addition, Response Metadata may include pagination information, documented below.

Record Metadata

Individual records include a object with metadata about the record. Record metadata attributes include:meta

actor_identifier: The login identifier associated with the last record modification*
created: The timestamp of the record creation
deleted: If , the record is deleted*true
modified: The timestamp of when the record was last modified
revision: The revision number of this record*

_idattribute : If set, this is an older revision of the specified record*

*See for more information.Changelog Behavior

Pagination

Pagination is generally available on "index" listings of objects, ie: requests that can return more than one object in a list. Pagination is controlled by
appending the following parameters to the query string:

direction: Controls the direction of the sort of objects, (ascending) or (descending)asc desc
limit: The maximum number of results to return (per page)
sort: The field to sort the results on
page: Number of page to return results for, with 1 being the first page

The following attributes will be returned in the Response Metadata:

currentPage: The current page of results, which should correspond to the parameterpage
itemsPerPage: The number of objects in this page, which should correspond to the parameterlimit
pageCount: The total number of pages
startIndex: The index of the first result (out of totalResults) in the current page, starting from 1 (the first result on the first page)
totalResults: The total number of results

It is possible to guarantee a full pagination over a large dataset that might receive new records during the pagination process by using Keyset Pagination.
In short, sort on the field in (ascending) direction. New records will be appended to the set as each new page is returned (as indicated by id asc totalRes

).ults

Standard API Operations (CRUD)

Most APIs implement a standard set of CRUD operations, which are documented here. See the documentation for each API (under , below) API Reference
for the details of which attributes are supported for each API, as well supplemental API calls or deviations from the standard CRUD set.

Add

Add one or more new objects.

Request Format

Request POST /api/v2/objects

Request Body List of objects

Paginated? No

Response Format

HTTP
Status

Response
Body

Description

200 OK Results
Response

Add requests generate a object with an array of objects correlating to the request objects. For example, if results
two objects were added, there will be two results in the array, in the order of the original request. Each result is an
object on success, or on failure.id error

400 Bad
Request

Error
Response

Attribute validation failed

When more than one object is provided, and the object type has a parent, all objects must have the same parent value. For example, if adding
two COUs in one operation, both COUs must belong to the same CO.

https://spaces.at.internet2.edu/display/COmanage/Changelog+Behavior

401
Unauthoriz
ed

Authentication required

500
Internal
Server
Error

Error
Response

Server error

Example: Add Two New COs

POST /registry/api/v2/cos
{
 "Cos": [
 {
 "name": "REST Test",
 "description": "Test REST API v2",
 "status": "Q"
 },
 {
 "name": "REST Test 2",
 "description": "Second Test REST API v2",
 "status": "A"
 }
]
}

200 OK
{
 "results": [
 {
 "error": "Entity save failure (status: \"content\")."
 },
 {
 "id": 142
 }
]
}

Delete

Remove an object. In most cases, this will execute a "soft" delete, meaning the record is logically deleted but an archived copy remains in the database.
See for more information.Changelog Behavior

Request Format

Request DELETE /api/v2/ /objects id

Request Body None

Paginated? No

Response Format

HTTP Status Response Body Description

200 OK Object deleted

400 Bad Request Error Response id not provided or not found

401 Unauthorized Authentication required

500 Internal Server Error Error Response Server error

Edit

Edit an existing object. Note the old values for the object are archived, see for more information.Changelog Behavior

https://spaces.at.internet2.edu/display/COmanage/Changelog+Behavior
https://spaces.at.internet2.edu/display/COmanage/Changelog+Behavior

Request Format

Request PUT /api/v2/ /objects id

Request Body Object

Paginated? No

Response Format

HTTP Status Response Body Description

200 OK Update successful

400 Bad Request Error Response Attribute validation failed or not foundid

401 Unauthorized Authentication required

500 Internal Server Error Error Response Server error

Example: Update CO

PUT /registry/api/v2/cos/142
{
 "Cos": {
 "name": "REST Test II",
 "description": "Second Test REST API v2",
 "status": "A"
 }
}

200 OK

View (one)

Retrieve an existing object.

Request Format

Request GET /api/v2/ /objects id

Request Body None

Paginated? No

Response Format

HTTP Status Response Body Description

200 OK An array of a single CO object CO returned

401 Unauthorized Authentication required

404 Not Found id not found

500 Internal Server Error Error Response Unknown error

The response format is the same as for below, but without pagination metadata.View (all)

View (all)

Retrieve all existing objects. This request may be modified by API-specific parameters to filter available results.

Request Format

Request GET /api/v2/objects

Request Body None

Paginated? Yes

Response Format

HTTP Status Response Body Description

200 OK An array of a single CO object CO returned

401 Unauthorized Authentication required

500 Internal Server Error Error Response Unknown error

For requests that generate response bodies (ie: "View" requests), the format is a object holding Response Metadata, followed by a responseMeta
response object named for the model requested. The response object will be a list of data objects, with a unique field, a set of attributes appropriate for id
the model, and a section with Record Metadata.meta

Example: Obtain COs, Paginated

GET /registry/api/v2/cos?page=2&limit=3

200 OK
{
 "responseMeta": {
 "totalResults": "20",
 "startIndex": "4",
 "itemsPerPage": "3",
 "currentPage": 2,
 "pageCount": 7,
 "resource": "Cos",
 "version": "2"
 },
 "Cos": [
 {
 "id": 1,
 "name": "COmanage",
 "description": "COmanage Registry Internal CO",
 "status": "A",
 "meta": {
 "created": "2011-07-28T21:26:09+00:00",
 "modified": "2011-07-28T21:26:09+00:00",
 "revision": null,
 "deleted": null,
 "actor_identifier": null,
 "co_id": null
 }
 },
 {
 "id": 2,
 "name": "TestCO",
 "description": "Test CO",
 "status": "A",
 "meta": {
 "created": "2011-07-28T21:27:52+00:00",
 "modified": "2018-11-27T00:37:47+00:00",
 "revision": null,
 "deleted": null,
 "actor_identifier": null,
 "co_id": null
 }
 },
 {
 "id": 68,
 "name": "Flat CO",
 "description": "CO with no COUs",
 "status": "A",
 "meta": {
 "created": "2018-06-01T02:39:04+00:00",
 "modified": "2018-06-01T02:39:04+00:00",
 "revision": null,
 "deleted": null,
 "actor_identifier": null,
 "co_id": null
 }
 }
]
}

API Reference

API Version Available Since*

AdHocAttribute 2 v3.3.0

Address 2 v0.1

https://spaces.at.internet2.edu/display/COmanage/AdHocAttribute+API+v2
https://spaces.at.internet2.edu/display/COmanage/Address+API+v2

API User 2 v5.0.0

CO 2 v0.1

COU 2 v0.2

CO Settings 2 v5.0.0

EmailAddress 2 v0.1

ExternalIdentity 2 v0.2

ExternalIdentityRole 2 v5.0.0

Group 2 v0.1

GroupMember 2 v0.1

GroupNesting 2 v5.0.0

GroupOwner 2 v5.0.0

HistoryRecord 2 v0.7

Identifier 2 v0.1

Job 2 v5.0.0

JobHistoryRecord 2 v5.0.0

Name 2 v0.8.3

Person 2 v0.1

PersonRole 2 v0.2

Pronoun 2 v5.0.0

Server 2 v5.0.0

TelephoneNumber 2 v0.1

Type 2 v0.6

Url 2 v3.1.0

*For APIs available prior to Registry v5.0.0, column denotes introduction of API v1. All APIs transitioned to API v2 with Registry v5.0.0.

https://spaces.at.internet2.edu/display/COmanage/API+User+API+v2
https://spaces.at.internet2.edu/display/COmanage/CO+API+v2
https://spaces.at.internet2.edu/display/COmanage/COU+API+v2
https://spaces.at.internet2.edu/display/COmanage/CO+Settings+API+v2
https://spaces.at.internet2.edu/display/COmanage/EmailAddress+API+v2
https://spaces.at.internet2.edu/display/COmanage/ExternalIdentity+API+v2
https://spaces.at.internet2.edu/display/COmanage/ExternalIdentityRole+API+v2
https://spaces.at.internet2.edu/display/COmanage/Group+API+v2
https://spaces.at.internet2.edu/display/COmanage/GroupMember+API+v2
https://spaces.at.internet2.edu/display/COmanage/GroupNesting+API+v2
https://spaces.at.internet2.edu/display/COmanage/GroupOwner+API+v2
https://spaces.at.internet2.edu/display/COmanage/HistoryRecord+API+v2
https://spaces.at.internet2.edu/display/COmanage/Identifier+API+v2
https://spaces.at.internet2.edu/display/COmanage/Job+API+v2
https://spaces.at.internet2.edu/display/COmanage/JobHistoryRecord+API+v2
https://spaces.at.internet2.edu/display/COmanage/Name+API+v2
https://spaces.at.internet2.edu/display/COmanage/Person+API+v2
https://spaces.at.internet2.edu/display/COmanage/PersonRole+API+v2
https://spaces.at.internet2.edu/display/COmanage/Pronoun+API+v2
https://spaces.at.internet2.edu/display/COmanage/Server+API+v2
https://spaces.at.internet2.edu/display/COmanage/TelephoneNumber+API+v2
https://spaces.at.internet2.edu/display/COmanage/Type+API+v2
https://spaces.at.internet2.edu/display/COmanage/URL+API+v2

	REST API v2

