
Getting Started with midPoint

Introduction
Prerequisites
Getting started (simple demo)

Building own images
After starting

Beyond the simple demo
Configuring the container (general information)

How to set environment variables after composition is done
How to set Docker secrets and configs

Configuring specific container features
Repository
Logging
Authentication
Other

Guiding requirements for this project: TIER Docker Container Specification

Introduction
This page shows how to get started with a Docker image for the midPoint component of the InCommon Trusted Access Platform.

Prerequisites
In order to set up and run this container and associated demonstrations, you need a Linux machine with a reasonably recent Docker and docker-

 installation. The most advanced optionally uses an LDAP browser, e.g. Apache Directory Studio that itself requires Java.compose demo/grouper

This container and demos were tested on Ubuntu 18.04.1 LTS with

Docker 18.06.1-ce,
docker-compose 1.17.1 (and 1.22.0),
libxml2-utils package (in order to have command available),xmllint
Apache Directory Studio 2.0.0.v20170904-M13 with OpenJDK 8.

The LDAP browser is really optional. It is used only to check that LDAP objects are created correctly. You can safely proceed without it.

It seems that the usual way of installation via e.g. does not always guarantee sufficiently recent versions of Docker and . To apt-get docker-compose
have the latest stable versions you can use procedures described here:

https://docs.docker.com/install/linux/docker-ce/ubuntu/#install-docker-ce
https://docs.docker.com/compose/install/

Also, make sure appropriate ports are available on the host machine. They are listed in the documentation to individual demonstrations; usually they are
8443 and 3306, sometimes 389, 443, or 5432. The needs even more free ports, please see the description.demo/grouper

Getting started (simple demo)
The image cannot be "run" by itself as it requires a midPoint repository - i.e. an SQL database - to execute. So the easiest way to start dockerized
midPoint is to use one of the provided demonstrations. The most logical choice for just getting started with midPoint is .demo/simple

$ git clone https://github.internet2.edu/Docker/midPoint_container.git
$ cd midPoint_container/demo/simple
$ docker-compose up

Building own images

The above commands download TAP image from Internet2's enterprise github. Alternatively, you can build this image yourself. Here is how:midpoint

This is a live document. If you encounter issues, please let us know via the Internet2 Slack channel or via email to #incommon-midpoint inctr
ust-si@incommon.org

https://docs.docker.com/install/linux/docker-ce/ubuntu/#install-docker-ce
https://docs.docker.com/compose/install/
mailto:inctrust-si@incommon.org
mailto:inctrust-si@incommon.org

$ git clone https://github.internet2.edu/Docker/midPoint_container.git
$ cd midPoint_container
$./build.sh
$ cd demo/simple
$ docker-compose up

(Note the has a switch that skips downloading the midPoint distribution archive, saving some time during repeated builds.)build.sh -n

After starting

After command successfully finishes you should see something like this on the console:docker-compose up

midpoint_server_1 | midpoint;midpoint.log;demo;;2018-09-20 16:25:22,191 [] [main] INFO (org.springframework.
boot.web.embedded.tomcat.TomcatWebServer): Tomcat started on port(s): 8080 (http) 9090 (http) with context path
'/midpoint'
midpoint_server_1 | midpoint;midpoint.log;demo;;2018-09-20 16:25:22,209 [] [main] INFO (com.evolveum.midpoint.
web.boot.MidPointSpringApplication): Started MidPointSpringApplication in 60.512 seconds (JVM running for
61.688)

Now you can log into midPoint using URL, with an user of and a password of . If you are using https://localhost:8443/midpoint administrator 5ecr3t
midPoint 4.8.1 or greater please check the documentation on . how to set an initial password

Beyond the simple demo
Besides the midPoint image itself, and the simple demo discussed above, the project contains demonstrations that integrate midPoint with selected other
components

Demonstration
Instruction
Pages

Description

demo/simple The simplest use of midPoint: just running it along with a dockerized MariaDB repository.

demo
/shibboleth

Shows how to use midPoint with the Shibboleth authentication.

demo
/postgresql

Demonstration of how to use an alternative repository (PostgreSQL running in a Docker container) instead of MariaDB-based one.

demo/extrepo Demonstration of how to use externally hosted repository instead of MariaDB-based one. It also shows database schema version
mismatch detection as well as automated upgrade procedure.

demo/grouper This is a of the use of midPoint image in a wider environment consisting of Grouper, Shibboleth, LDAP directory, demonstration
RabbitMQ messaging, and sample source and target systems. For a step-by-step walk-through, see the Grouper Integration Demo
page.

Configuring the container (general information)
The lowest level of configuration of the midPoint container is during its inclusion into a Docker composition. There is the full set of environment properties
and other configurable items (e.g. Docker secrets and configs) available.

During the composition some of the environment properties can be made accessible from the outside. This depends strictly on the compositor. The
demonstrations here show some of the options.

How to set environment variables after composition is done

After the composition is done, you can set the environment variables like this:

$ export ENV="test" USERTOKEN="4.0.1" MP_MEM="4096m"
$ docker-compose up

Or like this:

https://localhost:8443/midpoint
https://docs.evolveum.com/midpoint/reference/security/authentication/administrator-initial-password/
https://spaces.at.internet2.edu/display/MID/Simple+demo
https://spaces.at.internet2.edu/display/MID/Shibboleth+demo
https://spaces.at.internet2.edu/display/MID/Shibboleth+demo
https://spaces.at.internet2.edu/display/MID/PostgreSQL+demo
https://spaces.at.internet2.edu/display/MID/PostgreSQL+demo
https://spaces.at.internet2.edu/display/MID/External+repository+demo
https://spaces.at.internet2.edu/display/MID/Grouper+integration+demo
https://spaces.at.internet2.edu/display/MID/Grouper+integration+demo

$ env ENV="test" USERTOKEN="4.0.1" MP_MEM="4096m" docker-compose up

How to set Docker secrets and configs

The way of accessing secrets and configs is specific to the composition. In our demonstrations these are stored in the directory. configs-and-secrets
They are provided to midPoint containers in appropriate ways. (Currently, secrets are passed as Docker secrets, configs are mounted as volumes. This
might be changed in the future.) For detailed information on individual items please see the following sections.

Configuring specific container features
In this section we describe how to configure and use specific features of this midPoint dockerization.

Repository

Repository configuration is done via the following environment variables.

Environment
variable

Meaning Default value

REPO_DATABAS
E_TYPE

Type of the database. Supported values are , , , , mariadb mysql postgresql sqlserver ora
. It is possible to use as well but H2 is inappropriate for production use.cle H2

mariadb

REPO_JDBC_URL URL of the database. MariaDB: jdbc:
mariadb://$REPO_HOST:$REP
O_PORT/$REPO_DATABASE?
characterEncoding=utf8

MySQL: jdbc:
mysql://$REPO_HOST:$REPO_
PORT/$REPO_DATABASE?
characterEncoding=utf8

PostgreSQL: jdbc:
postgresql://$REPO_HOST:$
REPO_PORT/$REPO_DATABASE

SQL Server: jdbc:
sqlserver://$REPO_HOST:$R
EPO_PORT;
database=$REPO_DATABASE

Oracle: jdbc:oracle:thin:
@$REPO_HOST:$REPO_PORT/xe

REPO_HOST Host of the database. Used to construct the URL. midpoint_data

REPO_PORT Port of the database. Used to construct the URL. 3306, 5432, 1433, 1521 for
MariaDB/MySQL, PostgreSQL,
SQL Server and Oracle,
respectively

REPO_DATABASE Specific database to connect to. Used to construct the URL. registry

REPO_USER User under which the connection to the database is made. registry_user

REPO_PASSWOR
D_FILE

File (e.g. holding a docker secret) that contains the password for the db connection. /run/secrets
/mp_database_password.txt

REPO_MISSING
_SCHEMA_ACTI
ON

What should midPoint do if the database schema is missing (options: , ,).warn stop create create

REPO_UPGRADE
ABLE_SCHEMA_
ACTION

What should midPoint do if the database schema is obsolete but upgradeable (options: , warn s
,). As of midPoint 4.0, the only automated transition available is from 3.8 to 3.9.top upgrade

stop

REPO_SCHEMA_
VERSION_IF_M
ISSING

For midPoint versions before 3.9 that do not have schema information explicitly stored in the
database, this parameter allows specifying the version externally. It can be used for automated
upgrade from 3.8 to 3.9. (In such cases, specify it to be 3.8, assuming this is your schema
version.)

REPO_SCHEMA_
VARIANT

Used to specify what schema variant is to be used for automated creation or upgrade of the
database schema. Currently the only known variant is for MySQL/MariaDB.utf8mb4

Beware: it is the administrator's responsibility to choose the correct variant! Currently midPoint
does not try to determine the variant present in the database. So be sure to avoid applying e.g.

 if the database is not in character set, or mysql-upgrade-3.8-3.9-utf8mb4.sql utf8mb4
vice versa.

For automatic schema creation and upgrade options please see .Schema creation and updating section in midPoint documentation

Note that in order to connect to the database you have to provide the password. For security reasons, we use the indirect way through file access. So,
typically you provide the following Docker secret:

Secret Meaning Typical location in demonstration scenarios

mp_database_passwor
d.txt

A password used to access the repository (relates to
).REPO_USER

configs-and-secrets/midpoint/application
/database_password.txt

Of course, you can provide the password file in any other way, assuming you correctly set environment variable.REPO_PASSWORD_FILE

Logging

Logging is configured by setting the following environment variables:

Environment variable Meaning Default value

ENV environment (e.g. prod, dev, test) demo

USERTOKEN arbitrary user-supplied token

According to the , semicolons and spaces in these fields are eliminated. We decided to replace them by underscores.specification

Authentication

This midPoint dockerization supports two authentication mechanisms.

Mechanism Description

internal Users are authenticated against midPoint repository. Login name to be used is the property of the user, and the password is name cred
 property.entials/password/value

shibboleth Users are authenticated against Shibboleth IdP. This is ensured using Shibboleth SP (service provider) module for Apache httpd
configured as reverse proxy for midPoint.

Authentication configuration is done using the following environment variables.

Environment
variable

Meaning Default value

AUTHENTICATI
ON

Authentication mechanism to use internal

LOGOUT_URL URL to be used for logout (used for Shibboleth authentication) https://localhost
:8443/Shibboleth.
sso/Logout

SSO_HEADER Shibboleth attribute to be used as a login identifier. It is matched against property of the user when name
logging in. When changing it, do not forget to change your Shibboleth IdP configuration as well as
midPoint's configuration file.shibboleth2.xml

uid

Note that besides these variables you have to provide the following files. They are necessary for the Shibboleth service provider module.

File Description Typical location in demonstration scenarios

/etc/shibboleth/idp-
metadata.xml

Metadata related to Shibboleth identity
provider

configs-and-secrets/midpoint/shibboleth/idp-
metadata.xml

/etc/shibboleth/shibboleth2.
xml

Service provider configuration configs-and-secrets/midpoint/shibboleth
/shibboleth2.xml

https://wiki.evolveum.com/display/midPoint/Repository+Configuration#RepositoryConfiguration-schemaValidation
https://spaces.at.internet2.edu/display/TPWG/TIER+Docker+Container+Specification

/etc/shibboleth/sp-cert.pem Service provider certificates file configs-and-secrets/midpoint/shibboleth/sp-cert.
pem

And the following Docker secrets are to be provided:

Secret Description Typical location in demonstration scenarios

mp_sp-key.pem Service provider private key configs-and-secrets/midpoint/shibboleth/sp-key.pem

Other

Other aspects can be configured using the following variables and Docker secrets or configs.

Environment variable Meaning Default value

MP_MEM_MAX The limit for Java heap memory (setting)-Xmx 2048m

MP_MEM_INIT The initial amount of Java heap memory (setting)-Xms 1024m

MP_JAVA_OPTS Any other Java options to be passed to midPoint

MP_KEYSTORE_PASSWOR
D_FILE

File (e.g. holding a docker secret) that contains the password for the midPoint
keystore

/run/secrets
/mp_keystore_password.txt

MP_DIR midPoint home directory. Do not change until absolutely necessary, as the change
might break many things.

/opt/midpoint

TIMEZONE Name of the time zone to be set for the container upon startup. E.g. .US/Central UTC

Other files that are necessary for this midPoint container to function are:

Item Meaning Location

/etc/pki/tls/certs/host-cert.pem Host certificate for Apache httpd configs-and-secrets/midpoint/httpd/host-cert.pem

/etc/pki/tls/certs/cachain.pem Certificate chain for Apache httpd configs-and-secrets/midpoint/httpd/host-cert.pem

And the following Docker secrets are to be provided:

Item Kind Meaning Location

mp_host-key.pem secret Private key for Apache httpd configs-and-secrets/midpoint/httpd/host-
key.pem

mp_keystore_passw
ord.txt

secret Java keystore password used by midPoint e.g. to encrypt sensitive
information stored in the repository.

configs-and-secrets/midpoint/application
/keystore_password.txt

Guiding requirements for this project: TIER Docker Container Specification

https://spaces.at.internet2.edu/x/m4ZyBw

	Getting Started with midPoint

