
1.

2.
3.

a.

1.
2.

3.
4.

5.

Branch Management
The COmanage Project has adopted a modified version of as its branch management strategy. In short, the differences aregit-flow

One hotfix branch exists per minor release. That is, is used for (eg) . While these will typically branch from and hotfix-1.0.x 1.0.1and1.0.2
merge into , they may also branch from any release tag, and may not merge into if has already moved on to a new minor (or main main main
major) release. Both and should be deployable at all times.main hotfix-*
Release branches are not currently used. All features for release merge into , which eventually merges into to create a release tag.develop main
Feature branches (topic branches) are optional and should be named for the corresponding JIRA issue (eg:). In general, feature-co500
feature branches are used when merging directly into is undesirable, perhaps because the feature is experimental. Features may also develop
be used when a priority enhancement is made for a specific deployment, and the enhancement is required before the next scheduled minor
release.

Feature branches may also be used to target develop for a future (ie: not the next) feature release. In this case, the feature branch is
named for the target release (eg:) rather than a JIRA issue.feature-3.1

Summary

Branch Description Branches From Merges To

main Current release or release candidate - -

develop New features scheduled for next minor release - main, (if appropriate)hotfix-*

hotfix-* Bug fixes and minor changes scheduled for next bugfix release main main, develop

feature-* Experimental or prioritized features develop or (rarely) hotfix-* develop, hotfix-* (if appropriate)

container-maintenance Maintenance updates for container images, e.g. updated PHP version main main, develop, hotfix-*

Managing develop and Pull Requests

Pull Requests should be assigned a Reviewer, contextually determined. Absent any other decision, the Reviewer is the Component Lead.
The Reviewer should perform "appropriate" testing, such as pulling the commit to a local branch for testing, or applying a patch locally. The
Reviewer may hand off for additional testing as needed.
The Reviewer can perform the merge, or hand the PR to the Component Lead to merge.
While develop is not guaranteed to be stable, it also shouldn't be left broken for extended periods of time. (Of course, in most cases "broken" is
subjective, since only a small class of bugs will prevent the application from running at all.) Whoever discovers an issue owns it until handed off to
someone else (eg: to fix, or to test the fix, or to merge the fix).
In general, these guidelines are intentionally somewhat vague to allow for professional discretion.

References

http://nvie.com/posts/a-successful-git-branching-model
http://scottchacon.com/2011/08/31/github-flow.html

Do commit the same change to multiple branches. Pick the "earliest" relevant branch and commit there. For example, if you commit to not hotf
, do not also commit to . Your commit will flow to develop at the next merge. This makes it easier to track where a change ix-3.0.x develop

came from.

Under limited circumstances, it may be necessary to cherry pick a commit or otherwise violate this rule. Please discuss before doing so.

In general, do not merge , , or . That will happen at release time. You can merge a temporary branch into hotfix-* develop main feature-*
 or .hotfix-* develop

https://github.com/nvie/gitflow
http://nvie.com/posts/a-successful-git-branching-model
http://scottchacon.com/2011/08/31/github-flow.html

	Branch Management

