
1.
2.

a.

b.
c.
d.

e.

f.
3.
4.

a.
5.
6.

a.

b.

1.

2.
a.

i.
ii.

b.

c.
i.

1.

ii.

iii.

d.
3.

a.

b.

4.

5.

Authenticator Plugins
See also: Writing Registry Plugins

Some additional conventions are required when writing an Authenticator Plugin.

The name of the Plugin must match the format .FooAuthenticator
The Plugin must implement a model , and a corresponding Controller. (These are in addition to the other models and FooAuthenticator
controllers required for Plugins.)

This Model should extend , which defines some standard interfaces and provides some behind the scenes AuthenticatorBackend
common functionality.
The Model should set a public variable that is true is the Authenticator , or false otherwise.$multiple supports multiple values
The Controller should to extend ("Standard Authenticator" Controller), which provides some common functionality.SAuthController
When a new Authenticator Backend is instantiated, a skeletal row in the corresponding table will be co_foo_authenticators
created. There is no operation or view required. The skeletal row will point to the parent Authenticator Model.add
When an Authenticator Backend is edited, the entry point to the Authenticator Plugin will be foo_authenticator

. This will be called immediately after the Authenticator Backend is first instantiated./foo_authenticators/edit/#
Authenticator Plugins that support should set in the model.Authenticator Reset $enableSSR = true

Note has a (ie: 1 to 1) relationship with .Authenticator hasOne FooAuthenticator
The table should include a foreign key to .cm_foo_authenticators cm_authenticators:id

Other tables used by the plugin should reference .cm_foo_authenticators:id
The Plugin must implement several functions, which are defined in . More details are in the next section.Model/AuthenticatorBackend.php
The Plugin must implement a model for the Authenticator itself, . For example, for the Plugin, this Model/Foo.php PasswordAuthenticator
Model is and is defined in . The Plugin must also implement a corresponding Controller, Password Password.php Controller

. This Controller should extend ("Standard Authenticator Model" Controller)./FoosController.php SAMController.php
 The Authenticator's model should . SAMController will handle triggering provisioning under appropriate not actsAs Provisioner

circumstances.
Data from Authenticator models following these conventions and with a relation to CoPerson (ie: there is a foreign key) co_person_id
will automatically be made available to Provisioner plugins.

Implementing an Authenticator Plugin

There are two supported approaches for implementing an Authenticator Plugin. Plugins that only need to provide a form, storing the results in the
database, can use the Simple method. Plugins with more complicated requirements, such as redirecting the user to an external service, must instead use
the Complex method.

Simple Method

Define the database schema for the Authenticator model (or in the above examples; will be used going forward) in Foo Password Foo schema.
 as usual, and create the Model file () as usual.xml Foo.ctp

If your Plugin supports a single Authenticator per instantiation
Create two symlinks in your Plugin's directory:View/Foos

info.ctp -> ../../../../View/Authenticators/info.ctp
manage.ctp -> ../../../../View/Standard/edit.ctp

Create a file in the same directory that contains the form elements you need for your Plugin. (See other Authenticator fields.inc
plugins in the directory for examples.) The plugin configuration will be available in .AvailablePlugins $vv_authenticator
Implement as described above. Specifically, you mustModel/FooAuthenticator.php

Override so that it returns the current record(s) based on the parameters passed via the function signature. The current()
results from this function will be passed to your View via the variable.fields.inc $vv_current

 As of Registry v4.0.0, there is now a default implementation of this function implemented in AuthenticatorBacke
 that should work for most simple models. This function will also be used to provide data to Provisioner Plugins.nd

Override so that it implements whatever backend logic your plugin requires, including data validation and the actual manage()
saving to the database. You should also create a history record indicating that the Authenticator was updated, as part of this
call.
As of Registry v4.0.0, plugins may override and if plugin-specific actions are required when the lock() unlock()
Authenticator is locked or unlocked. (Ordinarily, locking or unlocking disables the COmanage management interface and
removes the Authenticator from provisioning data.) When doing so, the plugin must manually manage AuthenticatorStatus
records, or else locked data may be provided to Provisio

Implement the call.reset()
If your Plugin supports multiple Authenticators per instantiation

Implement an view. If you follow the typical add/delete/edit pattern used by other controllers, the parent SAMController will take index
care of much of the busy work for you, and you can simply provide a with the typical contents (and symlinks to the fields.inc
Standard views).
reset() is not automatically supported. You can either use the standard action to remove an Authenticator, or add your own delete
custom action to the index view (with the usual supporting MVC requirements to implement it).

Implement the call. If your Plugin supports multiple Authenticators per instantiation, the result should aggregate status across all status()
Authenticators attached to the Backend.
FoosController.php should use to calculate permissions for the required actions in $this->calculateParentPermissions() isAuthor

.ized()

Complex Method

https://spaces.at.internet2.edu/display/COmanage/Writing+Registry+Plugins
https://spaces.at.internet2.edu/display/COmanage/Authenticators#Authenticators-Authenticators-SinglevsMultipleValues
https://spaces.at.internet2.edu/display/COmanage/Recovery+Dashboard+Widget

In the Complex method, the plugin is expected to override the controller's action (and if appropriate) instead of overriding the model's manage() reset()
functions as described above. In other words, if you override , you do not need to worry about overriding SAMController::manage() AuthenticatorB

 or . This gives your plugin the ability to perform whatever logic and process flow it needs.ackend::manage() current()

As of Registry v4.0.0 it may be necessary to override to provide information to Provisioner Plugins, unless the default implementation in current() Authe
 is sufficient.nticatorBackend

Your controller's and (if appropriate) actions must manually call provisioning at the appropriate point in your plugin's logic. As of manage reset
Registry v3.3.0, Authenticators may be established during enrollment. Authenticator plugins should trigger provisioning during enrollment.not

As of Registry v4.0.0, the plugin must also trigger notification when the Authenticator is updated. The easiest way to do this is with AuthenticatorBacke
, which will handle all the necessary steps.nd::notify()

When you are finished, your controller should return control to Registry by calling .$this->performRedirect()

...
// Finished updating our Authenticator's state in the database
if(!isset($this->request->params['named']['copetitionid'])) {
 // Don't provision or notify if we're in an enrollment
 $this->Authenticator->provision($coPersonId);
 $this->Authenticator->notify($coPersonId);
}

// All done
$this->performRedirect();

Use to calculate permissions for the required actions in .$this->calculateParentPermissions() isAuthorized()

Implementing REST APIs

As of Registry v3.3.0, Authenticator plugins may expose APIs.

	Authenticator Plugins

