

NETWORKING APPROACH TO HOST-BASED INTRUSION DETECTION

DAVID FORMBY
INTERNET2 CINC UP CALL
OCTOBER 13, 2017

CREATING THE NEXT®

CURRENT EVENTS

KIM ZETTER SECURITY 11.29.10 04:18 PM

IRAN: COMPUTER MALWARE SABOTAGED URANIUM CENTRIFUCES ANDY GREENBERG SECURITY OB.12.17 OB: CENTRIFUCES 'CRASH OVE

'CRASH OVERRIDE': THE MALWARE THAT TOOK DOWN A POWER GRID

#CYBER RISK SEPTEMBER 6, 2017 / 6:05 AM / 14 DAYS AGO

WannaCry ransomware car plant to shut down

It's still making the rounds.

Hackers gain entry into U.S., European energy sector, Symantec warns

OVERVIEW

- Background
 - What is critical infrastructure and why is securing it so hard?
 - Why haven't there been more attacks on them?
- Ransomware for industrial control systems
 - Ransomware business model
 - Demo ransomware attack against a water utility
- What to do about it?
 - Standard defenses and their shortcomings
 - Program change detection
- Conclusions and discussion

BACKGROUND: CRITICAL INFRASTRUCTURE

DHS – 16 Critical Infrastructure Sectors

9 rely on industrial control systems (ICS)

Chemical

Factories

Dams

Energy

Defense

Food

Nuclear

Transportation

Water

BACKGROUND: ICS (IN)SECURITY

Standard security practices

- Regular, timely patching
- SSH, SFTP, HTTPS
- Required, long, complex passwords
- Confidentiality, integrity, availability
- Firmware signing
- ASLR, DEP, stack canary

Standard ICS practices

- Patches yearly, if ever
- Telnet, FTP, cleartext ICS protocols
- NO passwords, default, weak, clear
- Availability, availability, availability
- Starting to sign firmware
- Nope

BACKGROUND: ICS (IN)SECURITY

Case study – Power grid

- Vulnerability predictable TCP initial sequence numbers (1985)
 - Discovered from passive observations
 - Allows blind hijacking
- Power Distribution Substation Network
 - 196 Nodes 68% vulnerable
 - 3 out of 8 device vendors vulnerable
 - VxWorks the "Windows" of RTOS
 - GE "no method available to update this device"

BACKGROUND: ICS (IN)SECURITY

WHY IS ICS SECURITY SO HARD?

- Downtime
 - Lost revenue every minute
 - Always on power grid, water distribution...
- Legacy devices
 - Designed for 20 year lifecycles, not the IT standard of 3-5 years
 - Originally made for dedicated serial links, the only access control was physical
 - Misconceptions in industry

MISCONCEPTION - AIRGAP

Claim

"Our control network is airgapped, so we don't have to worry about security."

Reality

- Vendor maintenance access
- Remote monitoring
- Laptops, USB sticks
 - Stuxnet
- Insiders

MISCONCEPTION - BACKUPS

Claim

"If a PLC gets infected, we'll just switch it out with another."

Reality

- Likely ALL of your PLCs
 - \$10k x 100 PLCs > \$1million of PLC inventory
- Engineering software likely infected
- Manpower rewiring, reprogramming
- Original vulnerability STILL there

MISCONCEPTION - MOTIVATION

Claim

"Why would anyone want to attack us?"

Reality

- Small to medium sized businesses hit hardest by cyberattacks
- Havex, BlackEnergy, DragonFly already widespread
- Motivation
 - Monetary in the form of ransomware

OUTLINE

- Background
 - What is critical infrastructure and why is securing it so hard?
 - Why haven't there been more attacks on them?
- Ransomware for industrial control systems
 - Ransomware business model
 - Demo ransomware attack against a water utility
- What to do about it?
 - Standard defenses and their shortcomings
 - Program change detection
- Conclusions and discussion

NEWS

Move over Healthcare, Ransomware Has Manufacturing In Its Sights

by Bill McGee | Jun 06, 2016 | Filed in: Industry Trends & News

Holding the HMI Hostage—The Growing Threat of Ransomware

The New Hork Times

https://nyti.ms/2jO7vbZ

EUROPE

Hackers Use New Tactic at Austri Hotel: Locking the Doors

By DAN BILEFSKY JAN. 30, 2017

as works

Ransomware locks up San Francisco public transportation ticket machines

Some systems now restored; attacker demanded \$73,000.

SEAN GALLAGHER - 11/28/2016, 11:51 AM

NotPetya Ransomware Attack (FedEx estimates ransomware attack Maersk Over \$200 Million cost \$300 million

ICS RANSOMWARE: IMPACT

WHAT MAKES A RANSOMWARE ATTACK SUCCESSFUL?

Hospitals

- Easier targets
 - Old equipment
 - Traditionally weak security posture
- Increasing time pressure
- Lives at stake
- Crown jewels = patient data

ICS Networks

- Easier targets
 - Old equipment
 - Traditionally weak security posture
- Increasing time pressure
- Lives at stake
- Crown jewels = safe operation

ICS RANSOMWARE: MARKET SIZE ANALYSIS

Businesses Hit by Ransomware

- 70% paid the ransom
- Median payout approx. \$10k
- Small, medium sized businesses less prepared

Source: IBM, "Ransomware: How consumers and businesses value their data"

PLCs on the Internet

MicroLogix 1400

- 1,300
 Schneider Modicon M221
- 200

 $1,500 \times $10,000 \times 50\% = $7.5 Million$

Trivial PLCs

Expected payout

Conservative success rate

DEMO: WATER TREATMENT FACILITY

Typically mixed with chlorine to kill bacteria

We use iodine because it's safer to handle and cooler looking

Testbed simulates the Disinfection and Storage stages

DEMO: NETWORK

DEMO: INITIAL FOOTHOLD

Schneider Modicon M241

- Running CODESYS V3
 - Third party PLC runtime environment used by over 200 vendors
- Password
 - No brute force checks
 - No strength policy
- Controlling the water input and monitoring the storage levels

DEMO: NETWORK SCAN

Reprogram the M241 to scan the internal network and grab model numbers

Allen Bradley
MicroLogix 1400

Modicon M221

```
david@dell-xps: ~/Documents/rsa_pres
david@dell-xps:~/Documents/rsa_pres$ sudo nmap 192.168.1.241
Starting Nmap 6.40 ( http://nmap.org ) at 2017-02-03 15:17 EST
Nmap scan report for 192.168.1.241
Host is up (0.012s latency).
Not shown: 997 closed ports
         STATE SERVICE
         open ftp
        open http
1105/tcp open ftranhc
MAC Address: 00:80:F4:0A:9D:C7 (Telemecanique Electrique)
Nmap done: 1 IP address (1 host up) scanned in 159.76 seconds
david@dell-xps:~/Documents/rsa pres$ python internal recon.py
Devices found:
        192.168.1.140
       1766-LEC
        192.168.1.221
     → TM221CE24T
david@dell-xps:~/Documents/rsa_pres$
```

DEMO: NETWORK SCAN

Allen Bradley MicroLogix 1400

- Password only checked in engineering software, NOT the PLC
- SMTP mail client
- Controlling the addition of chlorine (iodine)

Schneider Modicon M221

- Password only checked in engineering software, NOT the PLC
- Controlling the final output of treated water

DEMO: NETWORK

Input water valve

Mixing valve to control ratio of water/iodine

Level sensors

Programmable logic controllers

Output water valve

MAXIMIZE SUCCESS

- Pick targets with high downtime costs
- Understand the process behind the PLCs
- Threaten to screw things up if they don't meet deadline
 - What if they just unplug everything?
- Covertly move system into critical state before notifying them
 - Allow reserve storage tank to get low first, blinding operators
 - Make continued operation by attacker more attractive than shutting everything down

https://youtu.be/t4u3nJDXwes

DEFENSES

- Proper password authentication
 - Requires vendors, not happening anytime soon
- Network segmentation, secure remote access
 - Insiders
- Monitor the network
 - Misses attacks launched from local access

OUTLINE

- Background
 - What is critical infrastructure and why is securing it so hard?
 - Why haven't there been more attacks on them?
- Ransomware for industrial control systems
 - Ransomware business model
 - Demo ransomware attack against a water utility
- What to do about it?
 - Standard defenses and their shortcomings
 - Program change detection
- Conclusions and discussion

MOTIVATION

Problem: Need intrusion detection of hosts for defense-in-depth

Solution: Program execution time signatures

BACKGROUND

Used everywhere from oil & gas to rollercoasters and elevators

Determined by hardware and complexity of program

Any <u>consistent</u> change, no matter how small, will eventually build up to observable differences

Example

Original Scan Cycle Time = 1ms + single bit comparison (0.1µs) Modified Scan Cycle Time = 1.0001ms

After 10 minutes, the original program has executed 60 cycles more than the modified one

DEFENSES: EXPERIMENTAL SETUP

PLCs used

PLC Model	Application Memory	Cycle Resolution
MicroLogix 1100	8 KB	100 μs
Siemens S7-1200	75 KB	1 ms
Schneider M221	256 KB	1 μs
Schneider M241	8 MB	1 μs

Example programs used

Program	Description	Instructions	Data Words
P1	Motor Starter	553	1068
P2	Sequencer Example	365	160
Р3	Bottling Plant	419	433
P4	Conveyor Belt	615	425

DEFENSES: PLC PROGRAM FINGERPRINTS

Fingerprints using system diagnostics

Faster processor and high resolution, clear differences

Slower, low resolution Significant overlap

DEFENSES: REFINED SCAN CYCLE MEASUREMENT

Improved accuracy

using cumulative scan cycle count

Clear distinctions

between programs

DEFENSES: ATTACKER MODEL

- Attacker Goals
 - No immediate impact on process to hide from operators
 - Insert logic bomb to cause damage over time
 - Stuxnet, e.g.
- Logic bomb triggers Inserted in Main Control Loop
 - Examine if closed (XIC)
 - Compare
 - Timer
 - Counter

DEFENSES: CHANGE DETECTION RESULTS

Detection time < 5 seconds, 0% FPR

Detection time < 1 minute, 0% FPR

DEFENSES: INTELLIGENT ADVERSARY

- Intelligent adversary can replay and mimic
- Use proof of work functions to give PLCs "alibis"
 - Prove they were not executing additional instructions
 - More robust way of measuring program execution time
- Proof-of-work (POW) function
 - Computationally expensive to solve, but easy to verify
 - Typically used as defense against denial of service
 - Ex. Discrete Log Problem: Solve for k in $g^k \mod p = b$

DEFENSES: PROOF OF WORK

98.5% TPR at 0% FPR

Detection time < 4 seconds, 0% FPR

DISCUSSION

- Branching
 - PLC programs mostly operate in states (startup, running, shutdown...)
 - Different fingerprints for different states
 - Little branching within state
 - Averages out quickly over thousands of cycles per second
- Overhead
 - Approximately 10 lines of code (2% increase)
 - Worst case, 1ms extra time

CONCLUSIONS

- Critical infrastructure is STILL insecure
- Lack of attacks not a sign of security, but of motivation
 - Ransomware could change this
- Current defenses fail to detect skilled adversaries
 - Need to go beyond simple network anomalies
 - Proof-of-work functions can give controllers provable "alibis"

THANK YOU!

DAVID FORMBY

DJFORMBY@GATECH.EDU