

Inter-domain Controller (IDC) Protocol

Specification

Andrew Lake, John Vollbrecht, Aaron Brown, Jason Zurawski: Internet2;

David Robertson, Mary Thompson, Chin Guok, , Evangelos Chaniotakis: ESnet

Tom Lehman: ISI-East

May 30, 2008

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

Table of Contents

1 Introduction .. 1

1.1 Goals and Requirements ... 1

1.1.1 Requirements .. 1

1.1.2 Non-Goals ... 2

1.2 Notational Conventions .. 3

1.3 Terminology ... 3

1.4 Namespaces .. 3

2 Messaging Models ... 7

2.1 Daisy-Chain Messaging ... 7

2.1.1 End-User to IDC Interface ... 8

2.1.2 IDC to IDC Message Forwarding ... 10

2.2 The Meta-scheduler Model... 12

3 Security .. 14

3.1 Authentication and Authorization .. 14

3.2 Digital Signature Format and Algorithms .. 14

3.3 Example ... 15

3.3.1 Request message .. 15

3.3.2 Reply message .. 16

4 Common Data Types ... 17

4.1 Reservation Details .. 17

4.2 Path Information ... 18

5 Resource Scheduling ... 22

5.1 Creating a Reservation .. 23

5.1.1 Path Calculation .. 24

5.2 Modifying a Reservation ... 27

5.3 Cancelling a Reservation ... 28

6 Signaling .. 29

6.1 Automatic Signaling ... 29

6.2 Message Signaling ... 30

6.2.1 Creating a Circuit ... 30

6.2.2 Refreshing a Circuit ... 32

6.2.3 Tearing down a Circuit ... 34

6.2.4 Examples ... 35

7 Monitoring .. 39

7.1 Listing Reservations ... 39

7.1.1 Example ... 42

7.2 Querying Reservations ... 43

7.2.1 Example ... 44

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

8 Topology Exchange ... 44

9 References ... 45

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

1

1 Introduction
This document specifies the Inter-domain Controller (IDC) protocol for dynamically

provisioning network resources across multiple administrative domains. Specifically, the

IDC protocol is designed to support services implementing the architecture described in

the IDC Architecture document [IDC-Arch]. The architecture describes dynamic

networking, the concept by which network resources (i.e. bandwidth, VLAN number,

etc) are requested by end-users, automatically provisioned by software, and released

when they are no longer needed. This contrasts more traditional “static” networking

where network configurations are manually made by network operators and usually stay

in place for long periods of time.

As the name suggests, the IDC protocol specifically addresses issues related to

dynamically requested resources that traverse domain boundaries. In both the static

and dynamic case there must be extensive coordination between each domain to

provision resources. In the static case this requires frequent communication between

network operators making manual configurations and can take weeks to complete

depending on the task. In the dynamic case, the IDC protocol automates this

coordination and allows for provisioning in seconds or minutes. Interactions between

domains are handled using messages defined in the protocol.

The IDC protocol defines messages for reserving network resources, signaling resource

provisioning, gathering information about previously requested resources, and basic

topology exchange. These messages are defined in a SOAP [SOAP] web service

format. Since all messages are defined using SOAP, the protocol also utilizes a few

external web service protocols and XML descriptions for features such as security and

topology description. Later sections in this document will indicate where external

protocols are used. Also, the complete list of supported messages defined by the IDC

protocol is contained within a Web Services Description Language (WSDL) file [WSDL].

This document describes the WSDL file and provides additional details on the

information elements in each message.

1.1 Goals and Requirements

The goal of the IDC protocol is to standardize the terminology, concepts, operations,

WSDL and XML needed to dynamically provision network resources across multiple

administrative domains.

1.1.1 Requirements

In meeting these goals the IDC protocol must address the following requirements:

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

2

 Must securely communicate messages. Security mechanisms that support

authentication, authorization, and encryption must be factored into the protocol

design. Security is vital to protecting the valuable network resources of

communicating domains.

 Must support multiple vendors and technology types. The diversity of

network equipment is an important consideration for an inter-domain protocol.

The protocol design should be generic enough that its information elements are

meaningful to configuring equipment made by different vendors and/or of

differing technology type (i.e. Ethernet, MPLS, etc.).

 Must provide information portable to other network services. The dynamic

allocation of network resources will be important to other services such as those

dedicated monitoring and measurement. The IDC protocol should utilize external

protocols and XML definitions when it increases its ability to interoperate with

other services without violating the other requirements.

 Must allow for future extensibility. Extensibility is important for supporting new

user requirements as they arise in the future. It is also critical for supporting the

dynamic provisioning of new network technologies as they become available.

1.1.2 Non-Goals

The following topics are outside the scope of the IDC protocol specification:

 Defining an interface between an Inter-domain Controller and the Domain

Controller. The IDC architecture [IDC-Arch] describes a domain specific service

called the Domain Controller (DC) that manages and provisions local network

resources. This document does not describe how information from IDC protocol

messages is passed to the DC as it is domain-specific.

 Defining security policy. This document defines information elements used in

IDC protocol messages that may be used to establish trust and make

authorization decisions, but it does not dictate how a domain uses that

information to make such decisions.

 Defining the information elements used to describe a domain’s topology.

Topology description is specified using an external specification called the

NMWG Control Plane Schema [NMWG-CP]. This document describes the

aspects of that schema pertinent to its own information elements but is not an

exhaustive description of the NMWG Control Plane definition.

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

3

 Defining domain-specific operations such as path calculation and

scheduling algorithms.

1.2 Notational Conventions

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

When describing abstract data models, this specification uses the notational convention

used by the XML Infoset [XML-Infoset]. Specifically, abstract property names always

appear in square brackets (e.g., [some property]).

When describing concrete XML schemas, this specification uses a convention where

each member of an element’s [children] or [attributes] property is described using an

XPath-like [XPATH] notation (e.g., /x:MyHeader/x:SomeProperty/@value1).

1.3 Terminology

Defined below are the basic definitions for the terminology used in this specification.

Circuit – A connection between two endpoints that can be used to transmit data

between them.

Confirmed Inter-domain Path (CIDP) – A Strict Inter-domain Path (SIDP) where each

domain in the path has authorized the use of the path segment between the local

ingress and egress links for a specified period of time.

Control Plane – The networking infrastructure that is used to share information

between entities capable of configuring and managing network equipment. The control

plane manages the data plane.

Data Plane – Network infrastructure that is used to make data connections between

network entities. Devices in the data plane generally correspond to layers 1-3 of the

OSI Networking Model [OSI]. A data plane may be managed by a control plane.

Destination – The endpoint of a circuit that is the last dynamically controlled link as

determined by the direction of the signaling flow.

Dynamic Circuit Network (DCN) – A network with a control plane capable of accepting

request messages for network resources between two endpoints and provisioning

connections based on that request. For the purposes of this document a DCN MUST

have a Domain Controller and MAY have an Inter-domain Controller.

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

4

Domain – In the Network Management Working Group (NMWG) topology schema a set

of network devices administrated by a common organization, group, or some other type

of authority.

Domain Controller (DC) – In the IDC Architecture [IDC-Arch] a service that provisions

and manages network devices in the local domain.

Egress - The property of being a point of exit. The term may be applied to a domain,

node, port, or link. When applied to the latter three terms it means the last node/port/link

in a given domain. When applied to domain it means the last domain in a given path. An

egress node/port/link is equivalent to the destination node/port/link if it is also in the

egress domain.

Endpoint – The termination points of a dynamic circuit’s path. There are two endpoints

in a path: source and destination.

End User – An entity that sends a request to an Inter-domain Controller (IDC) and is

not itself an IDC. The entity may be a human or a service.

Global Reservation Identifier (GRI) - A name assigned to a reservation upon receiving

a reservation creation request. This name is included in all messages about this

reservation, including messages about success of the reservation and creation of a

circuit from the reservation. The GRI is unique to all domains and often formed by

appending a locally unique number to the globally unique domain identifier of the IDC

receiving the request.

Hop – An element in a given path. A hop may take the form of a domain, node, port or

link.

Ingress – The property of being a point of entrance. The term may be applied to a

domain, node, port, or link. When applied to the latter three terms it means the first

node/port/link in a given domain. When applied to domain it means the first domain in a

given path. An ingress node/port/link is equivalent to the source node/port/link if it is

also in the ingress domain.

Inter-domain Controller (IDC) – A service that runs in a local domain and coordinates

with similar services in other domains to provision network resources across

administrative boundaries. Interoperating IDCs create an inter-domain control plane.

For the purposes of this document an IDC is a service that implements the IDC protocol.

Link - In the NMWG topology schema, a connection between two adjacent ports

capable of using some subset of resources available on that port.

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

5

Lookup Service – An external service that maps a human-readable name to a uniform

resource name (URN)

Loose Inter-domain Path (LIDP) – A list containing two endpoints and zero or more

intermediate hops. The hops may take the form of a domain, node, port or link.

Network Element – A domain, node, port, or link.

Network Resource – A network capability that can be allocated by the control plane.

This includes (but is not limited to) bandwidth, VLAN number, and SONET/SDH

timeslots.

Node – In the NMWG topology schema a physical or logical representation of a junction

of ports that connect to other nodes via links. A node may correspond directly to a

network device such as a switch or router or may be abstracted to represent a collection

of devices such as an Autonomous System (AS).

Path - A list of physical or logical network elements in the form of hops that data will

traverse when traveling between two endpoints. A path may contain all relevant

elements between two endpoints (strict) or only a subset (loose). When a path is

instantiated on the network it becomes a circuit.

Path Segment – A subset of a path consisting of two or more connected hops.

Port – In the NMWG topology schema a physical or logical connection point. A single

port may represent one or more interfaces on a network device. Ports are connected by

one or more links and are the children of nodes

Reservation – The right to use a set of network resources starting at a given time for a

specified duration.

Signaling – The process by which Inter-domain Controllers (IDCs) are triggered to have

their Domain Controllers (DC) create, manage, and remove circuits associated with a

reservation.

Source – The endpoint of a circuit that is the first dynamically controlled link as

determined by the direction of the signaling flow.

Strict Inter-domain path (SIDP) – A list of hops that MUST include every domain’s

ingress and egress link between its two endpoints. An IDC MUST honor the ingress

and egress links specified in the SIDP. A SIDP MAY contain intra-domain hops

between a domain’s ingress and egress. Intra-domain hops MAY be treated as hints in

interdomain paths.

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

6

 In the future, paths may be defined that contain a mixture of strict and loose hops

where a strict hop must be honored by the IDC and a loose hop is a hint to the IDC

attempting to find a path between endpoints.

Token – A hard to counterfeit sequence of bytes that grants the right of the holder to

signal a reservation.

Topology – A physical or logical description of how devices on the network data plane

connect. Elements in the topology may be provisioned by the control plane to create

circuits in response to dynamic network resource requests.

Uniform Resource Name (URN) – A persistent, location-independent, resource

identifier as defined in RFC 2141 [RFC2141]. URNs are used to identify domains,

nodes, ports and links in the NMWG topology schema. URNs that reference elements

defined in the NMWG topology schema always begin with the prefix “urn:ogf:network”. A

URN is considered a fully-qualified identifier because all parent elements must be

defined when referencing elements below the top level of a hierarchical structure. URNs

for each element in the domain,-> node -> port ->link hierarchy defined by NMWG look

like the following:

 Domain URN: urg:ogf:network:domain=domain_id

 Node URN: urg:ogf:network:domain=domain_id:node=node_id

 Port URN: urg:ogf:network:domain=domain_id:node=node_id:port=port_id

 Link URN:

urg:ogf:network:domain=domain_id:node=node_id:port=port_id:link=link_id

1.4 Namespaces

The following namespaces are used in this document:

Prefix Namespace

idc http://oscars.es.net/OSCARS

nmwg-cp http://ogf.org/schema/network/topology/ctrlPlane/20070626/

wsse
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-secext-1.0.xsd

wsse11
http://docs.oasis-open.org/wss/oasis-wss-

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

7

wssecurity-secext-1.1.xsd

wsu
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-utility-1.0.xsd

ds http://www.w3.org/2000/09/xmldsig#

soap http://schemas.xmlsoap.org/wsdl/soap12/

xsd http://www.w3.org/2001/XMLSchema

wsdl http://schemas.xmlsoap.org/wsdl/

2 Messaging Models

The Inter-domain Controller architecture [IDC-Arch] defines two messaging models: the

daisy chain model and the meta-scheduler model. The messaging model implemented

determines how IDCs are required to interact. The protocol defined in this document

provides mechanisms that support both daisy-chaining and meta-scheduling. These

mechanisms are explored further in this section.

2.1 Daisy-Chain Messaging

The daisy-chain model works by passing IDC protocol messages from one IDC to

another in a chain-like fashion through a sequence of domains. The order of IDCs in the

chain is determined by the path (or expected path) associated with a request. Paths

represent a linear sequence of network elements describing how data will travel from

one end of a point-to-point circuit to the other. Calculation of the path may be part of the

operation being performed (as is the case when a reservation is being created) or may

have been calculated by some previous operation (as is the case when cancelling a

pre-existing reservation). Since each network element in the linear sequence belongs to

an administrative domain an IDC can extrapolate the sequence of domains from the

path. Figure 2.1 shows an example of a daisy chain between three domains.

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

8

Figure 2.1 An example of a daisy-chain model with three domains.

In the figure the daisy chain is initiated when an end-user sends a request to the IDC of

Domain 1, the first domain in the path from source to destination. Currently the end-user

MUST send the initial request to the IDC of the first domain in the path. The IDC of

Domain 1 modifies the request and encapsulates it in a <idc:forward> message to the

next domain. Likewise, Domain 2 extracts the request parameters from the

<idc:forward> message, modifies it further if necessary, and then encapsulates it in a

message to Domain 3. Domain 3 processes the request and then returns a

<idc:forwardResponse> message back to Domain 2. Domain 2 also sends an

<idc:forwardResponse> to Domain 1 which then responds to the end-user’s original

request. The format of the messages sent between end-user and the initial IDC as well

as the <idc:forward> and <idc:forwardResponse> message sent between IDCs is

described in the remainder of this section.

2.1.1 End-User to IDC Interface

The IDC protocol defines a SOAP [SOAP] interface between the end-user and IDC that

MAY be implemented by a particular IDC instance. An IDC instance MAY implement

(instead or in addition) a custom interface for end-user interaction and still be valid if the

messages passed between IDCs conform to this specification document. An IDC

SHOULD implement some type of end-user interface that allows requesters to initiate

the operations defined in this specification

The end-user interface defined by this specification uses SOAP messages similar to

those passed between IDCs. The SOAP header contains the elements defined by WS-

Security [WS-Sec] and described in section 3 of this document. The SOAP body of

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

9

messages may be one of the several types defined in sections Error! Reference source

not found. thru Error! Reference source not found.. The primary difference between the

body of messages exchanged between an end-user and those exchanged with another

IDC is that the former are not encapsulated in <idc:forward> or <idc:forwardResponse>

elements (see section 2.1.2).

The WSDL [WSDL] operations available for end-user interactions with the IDC as

defined by this interface are listed below:

<wsdl:operation name="createReservation">

 <wsdl:input message="tns:createReservation" />

 <wsdl:output message="tns:createReservationResponse" />

 <wsdl:fault name="AAAErrorException"

 message="tns:AAAFaultMessage" />

 <wsdl:fault name="BSSErrorException"

 message="tns:BSSFaultMessage" />

</wsdl:operation>

<wsdl:operation name="cancelReservation">

 <wsdl:input message="tns:cancelReservation"></wsdl:input>

 <wsdl:output message="tns:cancelReservationResponse" />

 <wsdl:fault name="AAAErrorException"

 message="tns:AAAFaultMessage" />

 <wsdl:fault name="BSSErrorException"

 message="tns:BSSFaultMessage" />

</wsdl:operation>

<wsdl:operation name="queryReservation">

 <wsdl:input message="tns:queryReservation" />

 <wsdl:output message="tns:queryReservationResponse" />

 <wsdl:fault name="AAAErrorException"

 message="tns:AAAFaultMessage" />

 <wsdl:fault name="BSSErrorException"

 message="tns:BSSFaultMessage" />

</wsdl:operation>

<wsdl:operation name="modifyReservation">

 <wsdl:input message="tns:modifyReservation" />

 <wsdl:output message="tns:modifyReservationResponse" />

 <wsdl:fault name="AAAErrorException"

 message="tns:AAAFaultMessage" />

 <wsdl:fault name="BSSErrorException"

 message="tns:BSSFaultMessage" />

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

10

</wsdl:operation>

<wsdl:operation name="listReservations">

 <wsdl:input message="tns:listReservations" />

 <wsdl:output message="tns:listReservationsResponse" />

 <wsdl:fault name="AAAErrorException"

 message="tns:AAAFaultMessage" />

 <wsdl:fault name="BSSErrorException"

 message="tns:BSSFaultMessage" />

</wsdl:operation>

<wsdl:operation name="createPath">

 <wsdl:input message="tns:createPath" />

 <wsdl:output message="tns:createPathResponse" />

 <wsdl:fault name="AAAErrorException"

 message="tns:AAAFaultMessage" />

 <wsdl:fault name="BSSErrorException"

 message="tns:BSSFaultMessage" />

</wsdl:operation>

<wsdl:operation name="refreshPath">

 <wsdl:input message="tns:refreshPath" />

 <wsdl:output message="tns:refreshPathResponse" />

 <wsdl:fault name="AAAErrorException"

 message="tns:AAAFaultMessage" />

 <wsdl:fault name="BSSErrorException"

 message="tns:BSSFaultMessage" />

</wsdl:operation>

<wsdl:operation name="teardownPath">

 <wsdl:input message="tns:teardownPath" />

 <wsdl:output message="tns:teardownPathResponse" />

 <wsdl:fault name="AAAErrorException"

 message="tns:AAAFaultMessage" />

 <wsdl:fault name="BSSErrorException"

 message="tns:BSSFaultMessage" />

</wsdl:operation>

A detailed description of each message type in the context of end-user requests as well

as IDC-to-IDC requests is described in sections Error! Reference source not found. thru

Error! Reference source not found. of this document.

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

11

2.1.2 IDC to IDC Message Forwarding

Messages are passed between IDCs along a daisy chain using the forward operation.

The WSDL [WSDL] definition of the forward operation is shown below:

<wsdl:operation name="forward">

 <wsdl:input message="tns:forward"></wsdl:input>

 <wsdl:output message="tns:forwardResponse"></wsdl:output>

 <wsdl:fault name="AAAErrorException"

 message="tns:AAAFaultMessage" />

 <wsdl:fault name="BSSErrorException"

 message="tns:BSSFaultMessage" />

</wsdl:operation>

The operation defines an <idc:forward> element included in the SOAP body of a

message. The XML Schema [XML Schema] definition for this element is described

below:

<xsd:element name="forward">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="payload" type="tns:forwardPayload" />

 <xsd:element name="payloadSender" type="xsd:string" />

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

/forward

Container element included in the body of SOAP message when an IDC is

sending a request to the next IDC in a daisy chain

/forward/payload

Contains message element with request-specific parameters

/forward/payloadSender

A string indicating the end-user that sent the initial request. This string may be a

domain specific value such as a login associated with the end-user. Future

versions of this specification may further define this element.

A forward request will contain a different payload depending on the operation being

performed. Below is an XML Schema [XML Schema] description of the payload type:

<xsd:complexType name="forwardPayload">

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

12

 <xsd:sequence>

 <xsd:element name="contentType" type="xsd:string" />

 [Message Content Element]

 </xsd:sequence>

</xsd:complexType>

/forward/contentType

A string value corresponding to the element name of [Message Content Element]

in this request

/forward /[Message Content Element]

The message being forwarded as indicated by /forward/contentType. Valid request

types are those indicated in sections Error! Reference source not found. thru Error!

Reference source not found..

The forward operation further defines a <idc:forwardResponse> message to be returned

when an IDC is done processing a <idc:forward> request. The <idc:forwardResponse>

element and its type are defined below:

<xsd:element name="forwardResponse" type="tns:forwardReply" />

<xsd:complexType name="forwardReply">

 <xsd:sequence>

 <xsd:element name="contentType" type="xsd:string" />

 [Message Content Element]

 </xsd:sequence>

</xsd:complexType>

/forwardResponse

A container element included in the SOAP body of a message responding to an

earlier <idc:forward> request

/fowardResponse/contentType

String value corresponding to the element name of the [Message Content

Element] content in this response

/fowardResponse /[Message Content Element]

The response element indicated by /fowardResponse/contentType and

corresponding to the orginal <idc:forward> request. Valid responses are those

indicated in sections Error! Reference source not found. thru Error! Reference

source not found. of this document.

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

13

2.2 The Meta-scheduler Model

The IDC protocol supports a meta-scheduler model of messaging. In the meta-

scheduler model a centralized service, called a meta-scheduler, accepts an end-user’s

request then individually contacts each relevant domain’s IDC. Figure 2.2 shows a

diagram describing the meta-scheduler model:

Figure 2.2 An example of the meta-scheduler model with 3 domains

In the figure an end-user sends a request to a meta-scheduler that involves resources

on three domains. The meta-scheduler individually contacts the IDCs of domains 1,2,

and 3 and no interaction occurs between IDCs. Each IDC returns the result of the

request and the meta-scheduler aggregates their information and returns it to the end-

user. The IDC protocol specifies some, but certainly not all, mechanisms to support this

type of messaging model

The IDC protocol DOES NOT define an interface between the end-user and the meta-

scheduler; however, the current version of this specification DOES provide limited

support for interaction between meta-schedulers and IDCs. This can be achieved by

sending the requests specified in the optional end-user SOAP interface as defined in

section 2.1.1 of this document. Each of these requests sent by the meta-scheduler

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

14

MUST currently only reference resources in the domain on which an IDC resides. The

meta-scheduler is still an area of extensive research in this protocol, and support may

be extended in future versions of the IDC protocol.

3 Security

3.1 Authentication and Authorization

The IDC uses SOAP messages, secured by WS-Security v1.1 [WS-Sec] using the XML

Signature Standard [DigSig] to timestamp and sign, but not encrypt the message body

for the request messages and to time stamp, but not sign or encrypt the reply

messages. The messages are SOAP over HTTPS with server-side authentication that

serves to authenticate the HTTPS server to the client and to encrypt the connection.

The message signature accomplishes end-to-end authentication of the requester to the

IDC server. Note that at some sites the HTTPS server is on a separate host from the

IDC server due to firewall constraints. The IDC expects to find the x.509 certificate of

the requester included in the digital signature. It verifies that certificate and extracts the

subject name from the certificate which it uses to authorize the requested action. Note

that in order to verify the included certificate the IDC must have access to a trusted copy

of the certificate of its issuer. The privileges of a given requester are kept locally by the

IDC and indexed by the user’s subject name. They are not currently part of the

message protocol. If in the future it is desired to identify users by some means other

than an x.509 certificate, for example a Kerberos token or a SAML assertion, the IDC

will need to be modified to use such an identifier to access the privilege information for

the user.

3.2 Digital Signature Format and Algorithms

In theory our protocol should support a variety of algorithms used by the digital

signature. The only part of the signature that the IDC depends on is the security token

being an x.509 certificate from which the name of the requester can be extracted. To

the extent that various XML signing libraries support different algorithms one should be

able to choose various canonicalization, transforms, digest and signature methods.

However, due to the lack of compatibility of different packages and languages, it is

strongly recommended to use the choices shown in the example and itemized below:

Signing Info: the entire body of the message is signed in one part.

KeyInfo: the security token is a base64 encoded binary x.509v3 certificate.

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

15

Canonicalization method: Exclusive XML canonicalization,

(http://www.w3.org/2001/10/xml-exc-c14n#), is strongly recommended by the WS-

security specification. See [WS-Sec] section 8.1.

Transform method: same as canonicalization method

Digest method: SHA1 (http://www.w3.org/2000/09/xmldsig#sha1) is considered more

secure than md5 the other widely used digest algorithm.

Signature method: rsa-sha1 (http://www.w3.org/2000/09/xmldsig#rsa-sha1) is the

standard method to use an rsa key to sign a sha1 digest of the text.

3.3 Example

3.3.1 Request message

<soap:Envelope

 xmlns:soap="http://www.w3.org/2003/05/soap-envelope">

 <soap:Header>

 <wsse:Security

 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-

 200401-wss-wssecurity-secext-1.0.xsd"

 soap:mustUnderstand="true">

 <wsse:BinarySecurityToken

 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-

 200401-wss-wssecurity-utility-1.0.xsd"

 EncodingType="http://docs.oasis-open.org/wss/2004/01/

 oasis-200401-wss-soap-message-security-

 1.0#Base64Binary"

 ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-

 200401-wss-x509-token-profile-1.0#X509v3"

 wsu:Id="CertId-6479960">

 [X.509 Certificate]

 </wsse:BinarySecurityToken>

 <ds:Signature

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 Id="Signature-1830472">

 <ds:SignedInfo>

 <ds:CanonicalizationMethod

 Algorithm="http://www.w3.org/2001/10/xml-exc-

 c14n#"/>

 <ds:SignatureMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-

 sha1"/>

 <ds:Reference URI="#id-7438423">

 <ds:Transforms>

http://www.w3.org/2001/10/xml-exc-c14n
http://www.w3.org/2000/09/xmldsig#sha1
http://www.w3.org/2000/09/xmldsig#rsa-sha1

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

16

 <ds:Transform

 Algorithm="http://www.w3.org/2001/10/xml-exc-

 c14n#"/>

 </ds:Transforms>

 <ds:DigestMethod

 Algorithm="http://www.w3.org/2000/09/

 xmldsig#sha1"/>

 <ds:DigestValue>

 [SHA 1 Digest]

 </ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>

 [Message Signature]

 </ds:SignatureValue>

 <ds:KeyInfo Id="KeyId-15565667">

 <wsse:SecurityTokenReference

 xmlns:wsu="http://docs.oasis-

 open.org/wss/2004/01/oasis-200401-wss-wssecurity-

 utility-1.0.xsd"

 wsu:Id="STRId-13122813">

 <wsse:Reference URI="#CertId-6479960"

 ValueType="http://docs.oasis-

 open.org/wss/2004/01/oasis-200401-wss-x509-

 token-profile-1.0#X509v3"/>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </ds:Signature>

 <wsu:Timestamp

 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-

 200401-wss-wssecurity-utility-1.0.xsd"

 wsu:Id="Timestamp-13182325">

 <wsu:Created>2008-05-05T19:43:25.596Z</wsu:Created>

 <wsu:Expires>2008-05-05T19:48:25.596Z</wsu:Expires>

 </wsu:Timestamp>

 </wsse:Security>

 </soap:Header>

 <soap:Body

 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-

 200401-wss-wssecurity-utility-1.0.xsd"

 wsu:Id="id-7438423">

 [Unencrypted IDC Message]

 </soap:Body>

</soap:Envelope>

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

17

3.3.2 Reply message

<soap:Envelope

 xmlns:soap="http://www.w3.org/2003/05/soap-envelope">

 <soap:Header>

 <wsse:Security

 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-

 200401-wss-wssecurity-secext-1.0.xsd"

 soap:mustUnderstand="true">

 <wsu:Timestamp

 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-

 200401-wss-wssecurity-utility-1.0.xsd"

 wsu:Id="Timestamp-5830260">

 <wsu:Created>2008-05-05T19:43:32.635Z</wsu:Created>

 <wsu:Expires>2008-05-05T19:48:32.635Z</wsu:Expires>

 </wsu:Timestamp>

 <wsse11:SignatureConfirmation

 xmlns:wsse11="http://docs.oasis-open.org/wss/oasis-wss-

 wssecurity-secext-1.1.xsd"

 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-

 200401-wss-wssecurity-utility-1.0.xsd"

 Value="[Signature Value]"

 wsu:Id="SigConf-707092" />

 </wsse:Security>

 </soap:Header>

 <soap:Body>

 [Unencrypted IDC Message Response]

 </soap:Body>

</soap:Envelope>

4 Common Data Types

Data types common to several messages are described in this section.

4.1 Reservation Details

All reservations are described by the following XML Schema definition. All elements in

this definition MUST be included.

<xsd:complexType name="resDetails">

 <xsd:sequence>

 <xsd:element name="globalReservationId" type="xsd:string" />

 <xsd:element name="login" type="xsd:string" />

 <xsd:element name="status" type="xsd:string" />

 <xsd:element name="startTime" type="xsd:long" />

 <xsd:element name="endTime" type="xsd:long" />

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

18

 <xsd:element name="createTime" type="xsd:long" />

 <xsd:element name="bandwidth" type="xsd:int" />

 <xsd:element name="description" type="xsd:string" />

 <xsd:element name="pathInfo" type="tns:pathInfo" />

 </xsd:sequence>

</xsd:complexType>

/idc:ResDetails;/idc:globalReservationId

 The unique GRI described in section 1.3.

/idc:ResDetails/idc:login

The login identifier for the user on the originating IDC.

/idc:ResDetails/idc:status

Contains the current reservation status, and can be one of ACTIVE, PENDING,

FINISHED, CANCELLED, and FAILED. ACTIVE indicates the reservation has

been scheduled and the circuit is currently reserved, PENDING indicates the

reservation has been scheduled but the circuit has not be reserved yet, and

FINISHED indicates the circuit completed its lifetime normally and the reservation

is no longer active. CANCELLED indicates that the user cancelled the

reservation and the circuit was torn down before its scheduled time, and FAILED

indicates that the reservation could not be scheduled. More on the process of

resource scheduling is given in section 5.

/idc:ResDetails/idc:startTime

Contains the time the circuit was set up, if it was set up successfully. It is in

seconds since the epoch (Unix time).

/idc:ResDetails/idc:endTime

Contains the time the circuit is to be torn down or was torn down. It is in seconds

since the epoch (Unix time).

/idc:ResDetails/idc:createTime

 Contains the time the reservation was scheduled, if it was scheduled

successfully. It is in seconds since the epoch (Unix time).

 /idc:ResDetails/idc:bandwidth

The bandwidth for the circuit in megabits per second (Mbps).

/idc:ResDetails/idc:description

Contains a human-readable description of the reservation’s purpose.

/idc:ResDetails/idc:pathInfo

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

19

The next section describes all the definitions involved in the path involved with a

circuit.

4.2 Path Information

<xsd:complexType name="pathInfo">

 <xsd:sequence>

 <xsd:element name="pathSetupMode" type="xsd:string"

 minOccurs="1" />

 <xsd:element name="pathType" type="xsd:string" maxOccurs="1"

 minOccurs="0" />

 <xsd:element name="path" type="nmwg-cp:CtrlPlanePathContent"

 maxOccurs="1" minOccurs="0" />

 <xsd:element name="layer2Info" type="tns:layer2Info"

 maxOccurs="1" minOccurs="0" />

 <xsd:element name="layer3Info" type="tns:layer3Info"

 maxOccurs="1" minOccurs="0" />

 <xsd:element name="mplsInfo" type="tns:mplsInfo"

 maxOccurs="1" minOccurs="0" />

 </xsd:sequence>

</xsd:complexType>

idc:pathInfo/idc:pathSetupMode

This field MUST be included and is an indicator to the scheduler whether it

should initiate circuit setup automatically (see section 6.1) or have the user

initiate circuit setup with the createPath message (see section 6.2.1).

idc:pathInfo/idc:pathType

This field MAY be included, and indicates whether a path is “strict” or “loose”. If

not included then the path is assumed to be “strict”. A “strict” path indicates that

path is a Strict Inter-domain Path (SIDP) which (by definition) means that the

circuit MUST be setup using the specified ingress and egress points exactly as

given. A value of “loose” indicates that this is a Loose Inter-domain Path (LIDP)

and that IDCs may expand and modify segments of the path during reservation

scheduling.

idc:pathInfo/idc:path

This element contains the current set of hops in a given path. The contents of

this element are defined in the NMWG Control Plane topology schema [NMWG-

CP]. If idc:pathInfo/idc:pathType is set to “loose” then the hops inside this

element may be domain, node, port of link URNs. If idc:pathInfo/idc:pathType is

not included or set to strict then they MUST be link URNs

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

20

The following is excerpted from the NMWG schema:

<xs:complexType name="CtrlPlanePathContent">

 <xs:sequence>

 <xs:element minOccurs="0" maxOccurs="unbounded"

name="hop" type="CtrlPlane:CtrlPlaneHopContent" />

 </xs:sequence>

 <xs:attribute name="id" use="required" type="xs:string"/>

 </xs:complexType>

nmwg-cp:CtrlPlanePathContent

Contains a series of hops along the associated path.

nmwg-cp:CtrlPlanePathContent/nmwg:id

Contains the id of the associated path.

<xs:complexType name="CtrlPlaneHopContent">

 <xs:sequence>

 <xs:element minOccurs="0" name="domainIdRef" type="xs:string" />

 <xs:element minOccurs="0" name="nodeIdRef" type="xs:string" />

 <xs:element minOccurs="0" name="portIdRef" type="xs:string" />

 <xs:element minOccurs="0" name="linkIdRef" type="xs:string" />

 </xs:sequence>

 <xs:attribute name="id" use="required" type="xs:string"/>

 </xs:complexType>

A hop contains an optional link, port, node, and domain id, and a hop id in the NMWG

URN format.

One of the <idc:layer2Info> or <idc:layer3Info> types MUST be present. These types

contain information dependent on whether the underlying technology of the path to be

set up operates at OSI layer 2 or layer 3. The <idc:mplsInfo> type MAY be present,

depending on whether the MPLS protocol is being used in the particular IDC.

The following describes the layer2Info type:

<xsd:complexType name="layer2Info">

 <xsd:sequence>

 <xsd:element name="srcVtag" type="tns:vlanTag" minOccurs="0"

 maxOccurs="1" />

 <xsd:element name="destVtag" type="tns:vlanTag"

 minOccurs="0" maxOccurs="1" />

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

21

 <xsd:element name="srcEndpoint" type="xsd:string" />

 <xsd:element name="destEndpoint" type="xsd:string" />

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="vlanTag">

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:attribute use="optional" name="tagged"

 type="xsd:boolean"/>

 </xsd:extension>

 </xsd:simpleContent>

</xsd:complexType>

idc:vlanTag
Contains a string for the VLAN id and a boolean which MAY be included
indicating whether this VLAN is tagged or not.

idc:layer2Info/idc:srcVtag

This field MAY be included and specifies the VLAN at the source and whether it
is tagged or not.

idc:layer2Info/idc:destVtag

This field MAY be included and specifies the VLAN at the destination and
whether it is tagged or not.

idc:layer2Info/idc:srcEndpoint

This field MUST be included, and contains an identifier for the source at the
ingress of the originating IDC.

idc:layer2Info/idc:destEndpoint

This field MUST be included, and contains an identifier for the destination at the
egress of the ending IDC.

The layer3Info type is as follows:

<xsd:complexType name="layer3Info">

 <xsd:sequence>

 <xsd:element name="srcHost" type="xsd:string" />

 <xsd:element name="destHost" type="xsd:string" />

 <xsd:element name="protocol" type="xsd:string"

 maxOccurs="1" minOccurs="0"/>

 <xsd:element name="srcIpPort" type="xsd:int" maxOccurs="1"

 minOccurs="0" />

 <xsd:element name="destIpPort" type="xsd:int" maxOccurs="1"

 minOccurs="0"/>

 <xsd:element name="dscp" type="xsd:string" maxOccurs="1"

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

22

 minOccurs="0" />

 </xsd:sequence>

</xsd:complexType>

idc:layer3Info/idc:srcHost

This field MUST be included, and contains the DNS name or the IP address of

the source of the path.

idc:layer3Info/idc:destHost

This field MUST be included, and contains the DNS name or the IP address of

the destination of the path. The source and destination are typically outside the

scope of a particular IDC, and the path may also contains hops outside the scope

of an IDC.

idc:layer3Info/idc:protocol

This field MAY be included, and is typically “udp” or “tcp”, though other protocols

may be specified.

idc:layer3Info/idc:srcIpPort

This field MAY be included, and is the port number at the source.

idc:layer3Info/idc:destIpPort

This field MAY be included, and is the port number at the destination.

idc:layer3Info/idc:dscp

This field MAY be included, and contains the Differentiated Services Code Point

used in QoS.

The mplsInfo type MAY be present, and is only used where the IDC uses MPLS
internally:

<xsd:complexType name="mplsInfo">

 <xsd:sequence>

 <xsd:element name="burstLimit" type="xsd:int" />

 <xsd:element name="lspClass" type="xsd:string"

 maxOccurs="1" minOccurs="0" />

 </xsd:sequence>

</xsd:complexType>

idc:mplsInfo/idc:burstLimit

This field MUST be present, and is used by the policer to determine the

maximum burst above the average bandwidth.

Idc:mplsInfo/idc:lspClass

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

23

This field MUST be present, and contains the MPLS class of service

5 Resource Scheduling

A dynamic circuit uses network resources (such as bandwidth) along a path. A

reservation is created when a path with the desired resources for a circuit is found and

reserved. Resource scheduling is the process by which reservations are created,

modified, and cancelled. The IDC protocol defines operations for each of these

functions.

5.1 Creating a Reservation

The createReservation message is used to request the creation of a new reservation. It

is worth noting that the base resCreateContent data type used contains only

administrative information (see section 4.1); all technology-specific information is

contained in the pathInfo sub-object (see section 4.2). The format of the request

message is shown below:

<xsd:element name="createReservation"

 type="tns:resCreateContent" />

<xsd:complexType name="resCreateContent">

 <xsd:sequence>

 <xsd:element name="globalReservationId" type="xsd:string"

 maxOccurs="1" minOccurs="0"/>

 <xsd:element name="startTime" type="xsd:long" />

 <xsd:element name="endTime" type="xsd:long" />

 <xsd:element name="bandwidth" type="xsd:int" />

 <xsd:element name="description" type="xsd:string" />

 <xsd:element name="pathInfo" type="tns:pathInfo" />

 </xsd:sequence>

</xsd:complexType>

/idc:createReservation

Container element included in the SOAP [SOAP] body of a message that

contains the parameters for creating the reservation.

/idc:createReservation/idc:globalReservationId

 MAY be included. It is used to uniquely identify the reservation across all IDCs. If

 omitted, the message recipient MUST generate an appropriately unique identifier

 and return it in the response. Typical use is that an end-user omits this field, and

 their home IDC instance creates a string with a format of idc_id-seq_nr

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

24

/idc:createReservation/idc:startTime and idc:createReservation/dc:endTime

 MUST be included, and define the period for which the requested resources will

 be reserved. The field format is seconds-since-epoch.

/idc:createReservation/idc:bandwidth

 MUST be included, and specifies the number of Mbps requested to be reserved.

/idc:createReservation/idc:description

 MUST be included, and is a human-readable field meant to describe the purpose

 of the reservation.

/idc:createReservation/idc:pathInfo
MUST be included, and is extensively described in section 4.2. The path
information here represents what the reservation requester is asking from the
IDC.

The response of a createReservation operation is described below:

<xsd:element name="createReservationResponse"

 type="tns:createReply" />

<xsd:complexType name="createReply">

 <xsd:sequence>

 <xsd:element name="globalReservationId" type="xsd:string" />

 <xsd:element name="token" type="xsd:string" maxOccurs="1"

 minOccurs="0"/>

 <xsd:element name="status" type="xsd:string" />

 <xsd:element name="pathInfo" type="tns:pathInfo"

 maxOccurs="1" minOccurs="0" />

 </xsd:sequence>

</xsd:complexType>

/idc:createReservationResponse

Container element included in the SOAP [SOAP] body of a message with the

response of a createReservation operation.

/idc:createReservationResponse/idc:globalReservationId

 MUST be included. Typically an IDC instance generates a string with a format of

 idc_id-seq_nr and returns it to the user through this field.

/idc:createReservationResponse/idc:token

MAY be included, and contains a token that is to be used during path signaling.

The specific use cases for tokens are the subject of ongoing research.

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

25

/idc:createReservationResponse/idc:status

MUST be included. Contains the current reservation status, which will typically be

PENDING since the reservation has just been created.

/idc:createReservationResponse/idc:pathInfo
MUST be included, and is extensively described in section 4.2. This path

information describes the path the IDC decided that the reservation will actually

take.

5.1.1 Path Calculation

TODO: COMPLETE THIS SECTION

5.1.2 Example

This section contains an example of the messages sent and received by an end-user

creating a reservation. The example demonstrates a request for a reservation between

the source and destination displayed in Figure 2.1. The request message is shown

below:

<soap:Envelope ...>

 <soap:Header>

 [end-user security credentials]

 </soap:Header>

 <soap:Body…>

 <idc:createReservation>

 <idc:startTime>1210847896</idc:startTime>

 <idc:endTime>1213847896</idc:endTime>

 <idc:bandwidth>1000</idc:bandwidth>

 <idc:description>1 Gbps example</idc:description>

 <idc:pathInfo>

 <idc:pathSetupMode>timer-automatic<idc:pathSetupMode>

 <idc:layer2Info>

 <idc:srcEndpoint>hostname.domain1.net<idc:srcEndpoint>

 <idc:destEndpoint>hostname.domain3.net<idc:destEndpoint>

 </idc:layer2Info>

 </idc:pathInfo>

 </idc:createReservation>

 </soap:Body>

</soap:Envelope>

After the Domain 1 IDC receives the above message then the request is passed to

Domain 2 and Domain 3 according the daisy chain model. Each IDC expands and

verifies the reservation path and when complete Domain 1 returns a successful

response as shown below:

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

26

<soap:Envelope ...>

 <soap:Body …>

 <idc:createReservationResponse>

 <idc:globalReservationId>domain1.net-

1</idc:globalReservationId>

 <idc:status>PENDING</idc:status>

 <idc:pathInfo>

 <idc:pathSetupMode>timer-automatic<idc:pathSetupMode>

 <idc:path>

 <nmwg-cp:hop id=”1”>

 <nmwg-cp:linkIdRef>

 urn:ogf:network:domain=domain1.net:node=1:port=1:link=1

 </nmwg-cp:linkIdRef>

 </nmwg-cp:hop>

 <nmwg-cp:hop id=”2”>

 <nmwg-cp:linkIdRef>

 urn:ogf:network:domain=domain1.net:node=2:port=1:link=1

 </nmwg-cp:linkIdRef>

 </nmwg-cp:hop>

 <nmwg-cp:hop id=”3”>

 <nmwg-cp:linkIdRef>

 urn:ogf:network:domain=domain2.net:node=1:port=1:link=1

 </nmwg-cp:linkIdRef>

 </nmwg-cp:hop>

 <nmwg-cp:hop id=”4”>

 <nmwg-cp:linkIdRef>

 urn:ogf:network:domain=domain2.net:node=2:port=1:link=1

 </nmwg-cp:linkIdRef>

 </nmwg-cp:hop>

 <nmwg-cp:hop id=”5”>

 <nmwg-cp:linkIdRef>

 urn:ogf:network:domain=domain3.net:node=1:port=1:link=1

 </nmwg-cp:linkIdRef>

 </nmwg-cp:hop>

 <nmwg-cp:hop id=”6”>

 <nmwg-cp:linkIdRef>

 urn:ogf:network:domain=domain3.net:node=2:port=1:link=1

 </nmwg-cp:linkIdRef>

 </nmwg-cp:hop>

 </idc:path>

 <idc:layer2Info>

 <idc:srcVtag tagged=”true”>2988</idc:srcVtag>

 <idc:destVtag tagged=”true”>2988</idc:destVtag>

 <idc:srcEndpoint>

 urn:ogf:network:domain=domain1.net:node=1:port=1:link=1

 </idc:srcEndpoint>

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

27

 <idc:destEndpoint>

 urn:ogf:network:domain=domain3.net:node=2:port=1:link=1

 </idc:destEndpoint>

 </idc:layer2Info>

 </idc:pathInfo>

 </idc:createReservationResponse>

 </soap:Body>

</soap:Envelope>

Note that the IDC has generated a GRI, has converted the hostnames provided by the

user to URNs through the Lookup Service, has negotiated an inter-domain path and a

VLAN number, and provides all this information back to the user in the response.

5.2 Modifying a Reservation

This message is used to modify an existing reservation. The modification message

supports changes in bandwidth, start and end time, description, as well as path

information. The user provides the Global Reservation Identifier of the reservation they

wish to modify, as well as the desired new values of the parameters. The message

recipient MAY accept all, some, or none of the new values depending on policy and

user authorization.

The request message is described below:

<xsd:element name="modifyReservation"

 type="tns:modifyResContent" />

<xsd:complexType name="modifyResContent">

 <xsd:sequence>

 <xsd:element name="globalReservationId" type="xsd:string"

 maxOccurs="1" minOccurs="1"/>

 <xsd:element name="startTime" type="xsd:long" />

 <xsd:element name="endTime" type="xsd:long" />

 <xsd:element name="bandwidth" type="xsd:int" />

 <xsd:element name="description" type="xsd:string" />

 <xsd:element name="pathInfo" type="tns:pathInfo" />

 </xsd:sequence>

</xsd:complexType>

/idc:modifyReservation

Container element included in the SOAP [SOAP] body of a message that

contains the parameters for mofifying the reservation.

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

28

/idc:modifyReservation/idc:globalReservationId

 MUST be included. It is used to specify the reservation to be modified.

/idc:modifyReservation/idc:startTime and /idc:modifyReservation/idc:endTime

 MUST be included, and define the new period for which the requested resources

 will be reserved. The field format is seconds-since-epoch.

/idc:modifyReservation/idc:bandwidth

 MUST be included, and specifies the new number of Mbps requested.

/idc:modifyReservation/idc:description

 MUST be included, is the new human-readable field that describes the

 purpose of the reservation.

/idc:modifyReservation/idc:pathInfo
MUST be included, and is extensively described in section 4.2. The path
information here will replace the existing path information.

The modifyReservation response message is shown below:

<xsd:element name="modifyReservationResponse"

 type="tns:modifyResReply" />

<xsd:complexType name="modifyResReply">

 <xsd:sequence>

 <xsd:element name="reservation" type="tns:resDetails" />

 </xsd:sequence>

</xsd:complexType>

/idc:modifyReservationResponse

Container element included in the SOAP [SOAP] body of a message with the

response of a modifyReservation operation.

idc:modifyReservationResponse/idc:resDetails

 MUST be included, and is the full reservation description as it is after the

 changes the user requested. The data type is fully described in section 4.1.

5.3 Cancelling a Reservation

Cancellation of a reservation is used to correct erroneous reservations, or to terminate

active reservations before the originally defined end time. When receiving a valid

cancellation message the IDC will immediately release any resources held by the

reservation. Additionally, if the reservation was active that path will immediately be torn

down as well.

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

29

The request message is described below:

<xsd:element name="cancelReservation"

type="tns:globalReservationId" />

<xsd:complexType name="globalReservationId">

 <xsd:sequence>

 <xsd:element name="gri" type="xsd:string" />

 </xsd:sequence>

</xsd:complexType>

/idc:cancelReservation

Container element included in the SOAP [SOAP] body of a message with the

cancellation parameters.

/idc:cancelReservation/idc:gri

 MUST be included. The identifier for the reservation to be cancelled.

The response message of this operation is described below:

<xsd:element name="cancelReservationResponse" type="xsd:string"

/>

/idc:cancelReservationResponse

 MUST be included; a human-readable string such as “Cancellation successful”.

6 Signaling

Signaling is the process that triggers the creation of a reservation’s circuit on the

network. After a reservation is placed, a circuit with the reserved resources will not be

created until signaling occurs. In addition to circuit creation, signaling also encompasses

circuit refreshing and removal. Signaling may occur automatically or in response to

messages received by the IDC. The type of signaling that occurs is indicated by the

<idc:pathSetupMode> field specified in the createReservation message sent during

resource scheduling (see section 5).This section details the use of each signaling type.

6.1 Automatic Signaling

A <idc:pathSetupMode> value of timer-automatic indicates that a circuit will be created

at the reservation start-time and removed at the reservation end-time. Beyond resource

scheduling, no message exchange is required between a requester of a timer-automatic

reservation and the IDC that received the request. This type of signaling is useful in

many cases but does have some implications. It requires that a requester either assume

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

30

a circuit is created/removed at the specified time or continuously send queryReservation

messages to get the circuit status (see section 7.2). End-users or IDCs wishing to have

more direct control over a circuit may want to consider using message signaling.

6.2 Message Signaling

A reservation with <idc:pathSetupMode> set to signal-xml indicates that a circuit will

only be created/removed upon receiving a signaling message. Signaling with messages

is useful for those cases in which the requester wants more direct control over circuit

instantiation beyond just creation at the start-time and removal at the end-time. It is also

useful between IDCs because it provides some indication of circuit status in

downstream domains. For this reason it is RECOMMENDED that IDCs use message

signaling between other IDCs1.

Message signaling can be specified between IDCs no matter what the end-user

requests by always setting <idc:pathSetupMode> to signal-xml in the initial IDC when

forwarding resource scheduling messages. In such as case, the initial IDC MUST return

timer-automatic to the end-user and automatically send signaling messages to the first

downstream IDC at the start and end time of the reservation (i.e. the user does NOT

have to send any signaling messages). The signaling messages for creating, refreshing

and tearing down a circuit are detailed in the remainder of this section.

6.2.1 Creating a Circuit

After a reservation has been placed requiring message signaling (see section 5) a

circuit will not be created until the start time is reached AND a circuit creation message

is received by the IDC. Circuit creation is signaled using the createPath operation. A

createPath request is described in detail below:

<xsd:element name="createPath" type="tns:createPathContent" />

<xsd:complexType name="createPathContent">

 <xsd:sequence>

 <xsd:element name="token" type="xsd:string" minOccurs="0"

 maxOccurs="1"/>

 <xsd:element name="globalReservationId" type="xsd:string" />

 </xsd:sequence>

</xsd:complexType>

/idc:createPath

1
 This recommendation may change in the future if a more complex IDC-to-IDC notification scheme is

devised

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

31

A container element with parameters for creating the circuit. If the message is

from the end-user then this element will be contained directly within the body of a

SOAP message (see section 2.1.1). If this element is passing between IDCs it

will be encapsulated in an <idc:forward> element (see section 2.1.2).

/idc:createPath/idc:token

An optional hex string representing an authorization token generated during

resource scheduling. Some tokens MAY be transferable between end-users. If

the sender of this message is different from the entity that placed the reservation

then a transferable token is required. If the sender is the same as the entity that

place the reservations then an IDC MAY NOT require a token if necessary

authorization information can be derived from the message security headers (see

section 3).

/idc:createPath/idc:globalReservationId

A required field indicating the global reservation identifier (GRI) of the reservation

with the resources to instantiate.

The response of a createPath operation contains the following elements:

<xsd:element name="createPathResponse"

 type="tns:createPathResponseContent" />

<xsd:complexType name="createPathResponseContent">

 <xsd:sequence>

 <xsd:element name="globalReservationId" type="xsd:string" />

 <xsd:element name="status" type="xsd:string" />

 </xsd:sequence>

</xsd:complexType>

/idc:createPathResponse

A container element returning the results of the createPath request. If the

message is to the end-user then this element will be contained directly within the

body of a SOAP message (see section 2.1.1). If this element is passing between

IDCs it will be encapsulated in an <idc:forwardResponse> element (see section

2.1.2).

/idc:createPathResponse /idc:status

The status that resulted from the operation. It should have a value of ACTIVE if

the circuit was successfully created.

/idc:createPathResponse /idc:globalReservationId

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

32

A required field indicating the global reservation identifier (GRI) of the reservation

with the circuit that was created.

An IDC SHOULD complete the following order of tasks when processing the requests

and responses of a createPath operation:

1. Upon receiving a createPath message the IDC should verify that the requester is

authorized to signal the reservation.

2. Upon authorization the IDC should immediately send an <idc:forward> message

containing a <idc:createPath> element in the payload to the IDC of the next

domain in the reservation’s path. If there is no next domain in the path then the

IDC should proceed to step 3.

3. Upon receiving a successful response from the IDC contacted in step 2, the IDC

should contact the domain controller (DC) to create the local domain’s portion of

the circuit.

4. Upon successful creation of the circuit by the DC, the IDC should return a

response to the requester indicating the circuit has been created.

In step 2, forwarding this request prior to circuit creation is recommended because it

allows the local IDC to obtain the status of downstream domains before building its

portion of the dynamic circuit. If circuit creation in step 3 fails an IDC MAY send a

<idc:teardownPath> or <idc:cancelReservation> message to the next IDC in the

reservation’s path and MUST return a fault to the requester.

6.2.2 Refreshing a Circuit

An IDC MAY require periodic keep-alive messages for a circuit to remain active. It may

also want to check the status of the data plane in the local domain to make sure that no

errors have occurred with the circuit. Processing keep-alive messages and verifying the

data plane is often referred to as “refreshing” a circuit. This specification defines a

refreshPath operation that triggers this function. If an error is detected in the data plane

while performing the refresh an IDC MAY send a cancelReservation OR teardownPath

message to neighboring IDCs. Many domains MAY NOT implement the refreshPath

operation as its use has yet to be well-defined. Future versions of this specification may

expand upon to use of the refreshPath operation. The refreshPath request is described

below:

<xsd:element name="refreshPath" type="tns:refreshPathContent" />

<xsd:complexType name="refreshPathContent">

 <xsd:sequence>

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

33

 <xsd:element name="token" type="xsd:string" minOccurs="0"

 maxOccurs="1"/>

 <xsd:element name="globalReservationId" type="xsd:string" />

 </xsd:sequence>

</xsd:complexType>

/idc:refreshPath

A container element with parameters for refreshing the circuit. If the message is

from the end-user then this element will be contained directly within the body of a

SOAP message (see section 2.1.1). If this element is passing between IDCs it

will be encapsulated in an <idc:forward> element (see section 2.1.2).

/idc:refreshPath/idc:token

An optional hex string representing an authorization token generated during

resource scheduling. Some tokens MAY be transferable between end-users. If

the sender of this message is different from the entity that placed the reservation

then a transferable token is required. If the sender is the same as the entity that

place the reservations then an IDC MAY NOT require a token if necessary

authorization information can be derived from the message security headers (see

section 3).

/idc:refreshPath/idc:globalReservationId

A required field indicating the global reservation identifier (GRI) of the reservation

with the circuit to refresh.

The response of a refreshPath operation is as follows:

<xsd:element name="refreshPathResponse"

 type="tns:refreshPathResponseContent" />

<xsd:complexType name="refreshPathResponseContent">

 <xsd:sequence>

 <xsd:element name="globalReservationId" type="xsd:string" />

 <xsd:element name="status" type="xsd:string" />

 </xsd:sequence>

</xsd:complexType>

/idc:refreshPathResponse

A container element returning the results of the refreshPath request. If the

message is to the end-user then this element will be contained directly within the

body of a SOAP message (see section 2.1.1). If this element is passing between

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

34

IDCs it will be encapsulated in an <idc:forwardResponse> element (see section

2.1.2).

/idc:refreshPathResponse/idc:status

The status that resulted from the operation. It should have a value of ACTIVE if

the circuit still exists in the data plane. If an error occurred in the data plane a

fault should be thrown.

/idc:refreshPathResponse/idc:globalReservationId

A required field indicating the global reservation identifier (GRI) of the reservation

that was refreshed.

6.2.3 Tearing down a Circuit

When a circuit is no longer needed an end-user or IDC may send a teardownPath

message to remove a circuit from the data plane. This message is different from

cancelReservation (see section 5.3) in that it does not remove a reservation’s hold on

network resources. This means that a circuit may be instantiated again after a

teardownPath completes if another createPath message is sent before the reservation

end time. A circuit MUST be removed from the data plane at reservation end time

whether a teardownPath message is received or not. The teardownPath request is

described below:

<xsd:element name="teardownPath"

 type="tns:teardownPathContent" />

<xsd:complexType name="teardownPathContent">

 <xsd:sequence>

 <xsd:element name="token" type="xsd:string" minOccurs="0"

 maxOccurs="1"/>

 <xsd:element name="globalReservationId" type="xsd:string" />

 </xsd:sequence>

</xsd:complexType>

/idc:teardownPath

A container element with parameters for tearing down the circuit. If the message

is from the end-user then this element will be contained directly within the body of

a SOAP message (see section 2.1.1). If this element is passing between IDCs it

will be encapsulated in an <idc:forward> element (see section 2.1.2).

/idc:teardownPath/idc:token

An optional hex string representing an authorization token generated during

resource scheduling. Some tokens MAY be transferable between end-users. If

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

35

the sender of this message is different from the entity that placed the reservation

then a transferable token is required. If the sender is the same as the entity that

place the reservations then an IDC MAY NOT require a token if necessary

authorization information can be derived from the message security headers (see

section 3).

/idc:teardownPath/idc:globalReservationId

A required field indicating the global reservation identifier (GRI) of the reservation

with the circuit to remove.

The response of a teardownPath operation is as follows:

<xsd:element name="teardownPathResponse"

 type="tns:teardownPathResponseContent" />

<xsd:complexType name="teardownPathResponseContent">

 <xsd:sequence>

 <xsd:element name="globalReservationId" type="xsd:string"/>

 <xsd:element name="status" type="xsd:string" />

 </xsd:sequence>

</xsd:complexType>

/idc:teardownPathResponse

A container element returning the results of the teardownPath request. If the

message is to the end-user then this element will be contained directly within the

body of a SOAP message (see section 2.1.1). If this element is passing between

IDCs it will be encapsulated in an <idc:forwardResponse> element (see section

2.1.2).

/idc:teardownPathResponse/idc:status

The status that resulted from the operation. It should have a value of PENDING if

the circuit was successfully removed.

/idc:teardownPathResponse/idc:globalReservationId

A required field indicating the global reservation identifier (GRI) of the circuit that

was removed.

6.2.4 Examples

The section provides an example of signaling messages used to create and teardown a

circuit belonging to a reservation with global reservation identifier (GRI) domain1.net -

1.It assumes three domains are in the reservation path as shown in Figure 2.1. Domain

1 will be the initial domain and it will locally identify the user with string enduser1.

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

36

Once the start time of reservation domain1.net -1 is reached an end-user may send a

createPath request as follows:

<soap:Envelope ...>

 <soap:Header>

 [End-user security credentials]

 </soap:Header>

 <soap:Body ...>

 <idc:createPath ...>

 <idc:globalReservationId>domain1.net-

1<idc:globalReservationId>

 </idc:createPath>

 </soap:Body>

</soap:Envelope>

The IDC of Domain 1 shown in Figure 2.1 will receive this message and authorize it.

Since no token is provided the same end-user that made the reservation must also be

sending this request. Assuming that this is the case, Domain 1 forwards the following to

Domain 2’s IDC:

<soap:Envelope ...>

 <soap:Header>

 [Domain 1 security credentials]

 </soap:Header>

 <soap:Body ...>

 <idc:forward ...>

 <idc:payload>

 <idc:contentType>createPath</idc:contentType>

 <idc:createPath ...>

 <idc:globalReservationId>

 domain1.net-1<idc:globalReservationId>

 </idc:createPath>

 </idc:payload>

 <idc:payloadSender>enduser1</idc:payloadSender>

 </idc:forward>

 </soap:Body>

</soap:Envelope>

Domain 2 will also authorize this request and then immediately forward the same

request to Domain 3 (the only difference in the request will be that the security header

will contain credentials for Domain 2 rather than Domain 1). Since Domain 3 is the last

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

37

domain in the path, instead of forwarding the message it will contact its domain

controller (DC) with instructions to create Network 3’s portion of the circuit. When

complete it will return the following to Domain 2:

<soap:Envelope ...>

 <soap:Header>

 …

 </soap:Header>

 <soap:Body ...>

 <idc:forwardResponse …>

 <idc:contentType>createPathResponse</idc:contentType>

 <idc:createPathResponse ...>

 <idc:globalReservationId>domain1.net-

1<idc:globalReservationId>

 <idc:status>ACTIVE</idc:status>

 </idc:createPathResponse >

 </idc:forwardResponse>

 </soap:Body>

</soap:Envelope>

Domain 2 will then contact its DC to create Network 2’s portion of the circuit. It will

return a response to Domain 1 that looks the same as that which Domain 2 received

from Domain 3. Domain 1’s IDC will then contact its DC to create the local portion of the

circuit on Network 1. This results in the entire end-to-end circuit being created. It will

then return the following response to the end-user to complete the operation:

<soap:Envelope ...>

 <soap:Header>

 …

 </soap:Header>

 <soap:Body ...>

 <idc:createPathResponse ...>

 <idc:globalReservationId>domain1.net-

1<idc:globalReservationId>

 <idc:status>ACTIVE</idc:status>

 </idc:createPathResponse >

 </soap:Body>

</soap:Envelope>

Once the end-user receives the above response the circuit can be used to transmit data

between the endpoints.

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

38

When the circuit is no longer needed the end-user can either wait for the circuit to expire

or send a teardownPath before the reservation ends. Assuming the end-user chooses

the latter option, below is an example of the teardownPath request sent by the end-user

to Domain 1’s IDC:

<soap:Envelope ...>

 <soap:Header>

 [End-user security credentials]

 </soap:Header>

 <soap:Body ...>

 <idc:teardownPath ...>

 <idc:globalReservationId>domain1.net-

1<idc:globalReservationId>

 </idc:teardownPath>

 </soap:Body>

</soap:Envelope>

Domain 1’s IDC will authorize the request, request that the DC teardown the circuit, and

forward the request to Domain 2. Below is an example of the request sent to Domain 2’s

IDC:

<soap:Envelope ...>

 <soap:Header>

 [Domain 1 security credentials]

 </soap:Header>

 <soap:Body ...>

 <idc:forward ...>

 <idc:payload>

 <idc:contentType>teardownPath</idc:contentType>

 <idc:teardownPath ...>

 <idc:globalReservationId>

 domain1.net-1<idc:globalReservationId>

 </idc:teardownPath>

 </idc:payload>

 <idc:payloadSender>enduser1</idc:payloadSender>

 </idc:forward>

 </soap:Body>

</soap:Envelope>

Domain 2 will authorize the request, teardown the path, and forward the request to

Domain 3 (the request is the same as above, except with Domain 2’s authorization

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

39

credentials). Domain 3 will do the same and since it is the last domain in the path the

entire circuit is removed from the data plane. Domain 3’s IDC will return the following to

Domain 2:

<soap:Envelope ...>

 <soap:Header>

 …

 </soap:Header>

 <soap:Body ...>

 <idc:forwardResponse …>

 <idc:contentType>teardownPathResponse</idc:contentType>

 <idc:teardownPathResponse ...>

 <idc:globalReservationId>domain1.net-

1<idc:globalReservationId>

 <idc:status>PENDING</idc:status>

 </idc:teardownPathResponse >

 </idc:forwardResponse>

 </soap:Body>

</soap:Envelope>

Domain 2 will return a similar response to Domain 1. Domain 1 will then return the

following to the end-user to complete the operation:

<soap:Envelope ...>

 <soap:Header>

 …

 </soap:Header>

 <soap:Body ...>

 <idc:teardownPathResponse ...>

 <idc:globalReservationId>domain1.net-

1<idc:globalReservationId>

 <idc:status>PENDING</idc:status>

 </idc:teardownPathResponse >

 </soap:Body>

</soap:Envelope>

7 Monitoring

The IDC protocol currently provides two messages for finding information about

reservations, one giving a summary list according to a number of search terms, and one

providing reservation details given a global reservation identifier (GRI).

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

40

7.1 Listing Reservations

The listReservations operation returns a list of reservation that match a specified set of

search parameters. The summary list as retrieved from a given IDC does not include

intra-domain information that may be available from other IDCs along a reservation’s

path. All elements in a listReservations request MAY be included, and are used as

either terms to limit the search, or to control the number of results returned. Search

term elements can be combined to yield a subset of all stored reservations. The request

for the listReservations operation is described below.

<xsd:element name="listReservations" type="tns:listRequest" />

<xsd:complexType name="listRequest">

 <xsd:sequence>

 <xsd:element name="resStatus" type="xsd:string"

 maxOccurs="5" minOccurs="0" />

 <xsd:sequence maxOccurs="1" minOccurs="0">

 <xsd:element name="startTime" type="xsd:long" />

 <xsd:element name="endTime" type="xsd:long" />

 </xsd:sequence>

 <xsd:element name="description" type="xsd:string"

 maxOccurs="1" minOccurs="0" />

 <xsd:element name="linkId" type="xsd:string"

 maxOccurs="unbounded" minOccurs="0" />

 <xsd:element name="vlanTag" type="tns:vlanTag"

 minOccurs="0" maxOccurs="unbounded" />

 <xsd:element name="resRequested" type="xsd:int"

 minOccurs="0"/>

 <xsd:element name="resOffset" type="xsd:int"

 minOccurs="0"/>

 </xsd:sequence>

</xsd:complexType>

/idc:listReservations

Element included in the body of a SOAP [SOAP] message of type idc:listRequest

that contains search constraints for a desired list of reservations.

/idc:listReservations/idc:resStatus

Contains a list of statuses to constrain the search. It may include 0 or all of the

following: ACTIVE, PENDING, FINISHED, CANCELLED, and FAILED. If it is not

given, reservations with all statuses are returned, depending on the other search

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

41

parameters. If one or more are given, only reservations with those statuses are

returned.

/idc:listReservations/idc:startTime

Constrains the search such that only reservations ending after the start time are

returned.

/idc:listReservations/idc:endTime

Constrains the search such that only reservations starting before the end time

are returned.

/idc:listReservations/idc:description

Constrains the search such that only those reservations with that string in their

descriptions are returned.

/idc:listReservations/idc:linkId

Contains a list of zero or more link ids. Constrains the search such that only

reservations with those link ids in their intradomain paths are returned.

/idc:listReservations/idc:vlanTag

Contains a list of zero or more VLAN tags. Constrains the search such that only

reservations with those VLAN tags are returned.

/idc:listReservations/idc:resRequested

Contains an integer indicating how many results are returned in one request.

/idc:listReservations/idc:resOffset

Contains an integer offset into the total set of reservations. Taken together with

resRequested, it can be used to page through the results.

The response to a listReservations operation contains the following elements:

<xsd:element name="listReservationsResponse"

 type="tns:listReply" />

<xsd:complexType name="listReply">

 <xsd:sequence>

 <xsd:element name="resDetails" type="tns:resDetails"

 maxOccurs="unbounded" minOccurs="0" />

 <xsd:element name="totalResults" type="xsd:int"

 minOccurs="0" />

 </xsd:sequence>

</xsd:complexType>

/idc:listReservationsResponse

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

42

Element included in the body of a SOAP [SOAP] message of type idc:listReply

that contains zero or more objects with a summary of each reservation that

matched the search constraints in the listReservations request.

/idc:listReservationsResponse/idc:resDetails

Zero or more idc:resDetails instances (see section 4.1) containing information

about the reservations satisfying the search criteria, and may be empty.

/idc:listReservationsResponse/idc:totalResults

An optional element containing the number of instances returned.

7.1.1 Example

The following are examples of a listReservations request and response.

In the following request, reservations are requested that have finished successfully and

have a VLAN tag of 3000.

<soap:Envelope ...>

<soap:Body>

 <idc:listReservations>

 <idc:resStatus>FINISHED</idc:resStatus>

 <idc:vlanTag tagged="true">3000</idc:vlanTag>

 <idc:resRequested>10</idc:resRequested>

 <idc:resOffset>0</idc:resOffset>

 </idc:listReservations>

</soap:Body>

</soap:Envelope>

An abstracted view of the response is below:
<soap:Envelope ...>

<soap:Body>

 <idc:listReservationsResponse>

 <idc:resDetails>

 <idc:globalReservationId>domain1.net-1

 </idc:globalReservationId>

 <idc:login>user@domain.net</idc:login>

 <idc:status>FINISHED</idc:status>

 <idc:startTime>1206486746</idc:startTime>

 <idc:endTime>1206486962</idc:endTime>

 <idc:createTime>1206486752</idc:createTime>

 <idc:bandwidth>25</idc:bandwidth>

 <idc:description>default layer 2 test

 reservation</idc:description>

 <idc:pathInfo>

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

43

 <idc:pathSetupMode>timer-automatic</idc:pathSetupMode>

 <idc:path id="unimplemented">

 <ctrlp:hop id="hop1">

 <linkIdRef>linkId1</linkIdRef>

 </hop>

 ...

 <ctrlp:hop id="hopN">

 <linkIdRef>linkIdN</linkIdRef>

 </hop>

 </idc:path>

 </idc:pathInfo>

 <idc:layer2Info>

 <idc:srcVtag tagged="true">3000</idc:srcVtag>

 <idc:destVtag tagged="true">3000</idc:destVtag>

 <idc:srcEndpoint>srcLinkId</idc:srcEndpoint>

 <idc:destEndpoint>destLinkId</idc:destEndpoint>

 </idc:layer2Info>

 </idc:resDetails>

....

 <idc:totalResults><12></idc:totalResults>

 </idc:listReservationsResponse>

</soap:Body>

</soap:Envelope>

7.2 Querying Reservations

The queryReservation operation returns details about a specified reservation. The

queryReservation operation MAY be forwarded to other domains to obtain additional

information about the requested reservation. The request for the queryReservation

operation is described below.

<xsd:element name="queryReservation"

type="tns:globalReservationId" />

<xsd:complexType name="globalReservationId">

 <xsd:sequence>

 <xsd:element name="gri" type="xsd:string" />

 </xsd:sequence>

 </xsd:complexType>

/idc:queryReservation

Element included in the body of a SOAP [SOAP] message that contains

information to identify the reservation to query.

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

44

/idc:queryReservation/idc:globalReservationId

The unique global reservation id (GRI) of the reservation to query.

The following is the response to the queryReservation request:

<xsd:element name="queryReservationResponse"

 type="tns:resDetails" />

/idc:queryReservationResponse

Element included in the body of a SOAP [SOAP] message that contains the

details of a queried reservation.

/idc:queryReservationResponse/idc:resDetails

An instance (see section 4.1), if any, with the given global reservation id,

containing path information from all IDC’s participating in the circuit.

7.2.1 Example

An example of a queryReservation operation is shown below:

<soap:Envelope ...>

<soap:Body>

 <idc:queryReservation>

 <idc:gri>domain1.net-1</idc:gri>

 </idc:queryReservation>

</soap:Body>

</soap:Envelope>

See the preceding section for an example of a resDetails instance that would be

returned as part of a queryReservationResponse.

8 Topology Exchange

The inter-domain controller (IDC) currently offers limited support for exchanging

topology information between domains. It defines one operation named

getNetworkTopology that returns a view of the inter-domain topology. All topology

elements are described using the NMWG Control Plane [NMWG-CP] topology schema.

Topology exchange is still an area of active development and more sophisticated

services will provide this function in the future. The getNetworkTopology request is

described below:

<xsd:element name="getNetworkTopology"

 type="tns:getTopologyContent" />

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

45

<xsd:complexType name="getTopologyContent">

 <xsd:sequence>

 <xsd:element name="topologyType" type="xsd:string"

minOccurs="1" />

 </xsd:sequence>

</xsd:complexType>

/idc:getNetworkTopology

Container element for request parameters that is included directly in the body of

a SOAP message.

/idc:getNetworkTopology/idc:topologyType

Required parameter indicating the topology view to return. Currently only the

value all is supported which indicates that an IDC should return its own topology

in its entirety.

The response to a getNetworkTopology request looks like the following:

<xsd:element name="getNetworkTopologyResponse"

 type="tns:getTopologyResponseContent" />

<xsd:complexType name="getTopologyResponseContent">

 <xsd:sequence>

 <xsd:element ref="nmwg-cp:topology" minOccurs="1"/>

 </xsd:sequence>

</xsd:complexType>

/idc:getNetworkTopologyResponse

Container element for the topology returned from an IDC.

/idc:getNetworkTopologyResponse/nmwg-cp:topology

The topology element as defined by the NMWG Control Plane [NMWG-CP] schema

is the root element for a description of a network.

9 References

 [IDC-Arch] TBD

[NMWG-CP] TBD

[DigSig] XML-Signature Syntax and Processing: D. Eastlake 3rd,J. Reagle,

D. Solo, RFC3275 Sept 2002. http://www.ietf.org/rfc/rfc3275.txt

http://www.ietf.org/rfc/rfc3275.txt

Inter-domain Controller (IDC) Protocol Specification May 30, 2008

46

[RFC2119] S. Bradner, "Key words for use in RFCs to Indicate Requirement

Levels," RFC 2119, Harvard University, March 1997.

http://www.ietf.org/rfc/rfc2119.txt

[SOAP] “SOAP Version 1.2 Part 1: Messaging Framework”, W3C

Recommendation. http://www.w3.org/TR/soap12-part1/

[WSDL] “Web Services Description Language (WSDL) 1.1”, W3C Note.

http://www.w3.org/TR/wsdl

[WS-Sec] “Web Services Security SOAP Message Security 1.1 (WS-

Security 2004)”, OASIS Standard Specification, 1 February 2006.

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-

message-security-1.0.pdf

[XML-Infoset] “XML Information Set”, W3C Recommendation.

http://www.w3.org/TR/xml-infoset/

[XPath] “XML Path Language (XPath) Version 1.0”, W3C

Recommendation. http://www.w3.org/TR/xpath

[XML Schema] W3C Recommendation, "XML Schema Part 1: Structures,"2 May

2001. http://www.w3.org/TR/xmlschema11-1/

W3C Recommendation, "XML Schema Part 2: Datatypes," 2 May

2001. http://www.w3.org/TR/xmlschema11-2/

[URI] T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource

Identifiers (URI): Generic Syntax," RFC 2396, MIT/LCS, U.C.

Irvine, Xerox Corporation, August 1998.

http://www.ietf.org/rfc/rfc2396.txt

[URN] R. Moats, “URN Syntax”, RFC 2141, AT&T, May 1997.

http://www.ietf.org/rfc/rfc2141.txt

http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/wsdl
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xmlschema11-1/
http://www.w3.org/TR/xmlschema11-2/
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2141.txt

