
OSCARS Policy Interface
1 Goals
This document introduces the protocol used by the OSCARS Interdomain
Controller (IDC) software to request policy decisions during circuit reservation. It
provides use cases, an example implementation design, and a web service
message definition.

The ideas in this document are intended to be extensible to other use cases but
describing those use cases is beyond the scope of this document. The protocol is
also neutral as to how policy decisions are made or what policies are defined. A
detailed description of the policy decision process and policy definition is outside
the scope of this document.

The protocol addresses many of the policy issues observed in OSCARS but may
be extended or replaced by ongoing work in groups such as DICE. The end of
this document highlights some of the current limitations of the protocol as
currently defined.

2 Use Cases
2.1 Single Interdomain Controller

Figure 1: Simple use case where requester sends message to IDC and IDC asks policy
engine if the action is allowed.

Figure 1 shows a basic use case of the policy protocol defined in this document.
In the picture there are 3 entities:

1. Alice – the requester asking to reserve a set of network resources
2. IDC - the service that reserves the network resources based on the

request from Alice. If Alice’s request violates any policy then the IDC will
not provision the network resources and return a failure.

3. Policy Service - the service that accepts the details of a request from the
IDC and returns whether the request is allowed according to policy.

In the example the IDC asks the policy service to make a decision based on
three categories of information:

1. Who made the request. In this case Alice made the request so we call
Alice a Requester.

2. The type of request. In the context we only care about two request types:
createReservation and modifyReservation1. We call the request type the
Action.

3. The details of the reservation such as path, bandwidth and duration. We
call the reservation the Resource.

In this example those three pieces of information are all that the IDC directly
knows about a request. As we’ll see in the multi-domain case this changes -
especially as it pertains to the Requester.

2.2 Multiple Interdomain Controllers

Figure 2 Multi-IDC use case where there are three domains each with their own policy
service. Each domain wants policy applied based on the original requester (Alice) and the
neighboring domain that forwarded it the request.

Figure 2 shows the case where there are multiple IDCs each in a different
domain. Each domain has its own policy service in the example. In practice,
some domains may share a policy service and others may not have any, but
neither case significantly changes the main challenges of multi-domain
reservation.

In the multi-domain case an initial requester sends a message to the first domain
in the path. In Figure 2 Alice is the initial requester and Domain A is the first
domain. If it is determined the path of the circuit to be reserved goes across
multiple domains then the first IDC forwards it to the next domain in the path. In

1 Policy applies to modifyReservation because a user could potentially use it to
increase the amount of time resources are reserved. Other requests such as
cancel release the resources so we are assuming that using less is always
allowed.

this case Domain A forwards to Domain B. If the next domain determines there is
another domain in the path the request is again forwarded. This process
continues until the last domain in the path is reached. In our example Domain B
forwards to Domain C and the chain ends.

A challenge arises because groups would like to be able to apply policy based on
not only who sent the request (the requester) to their IDC but also who originally
sent the request (a special type of requester referred to as the originator). The
originator is an additional piece of information not required in the single domain
case. Figure 2 shows the last requester and originator of each policy access
request. Current IDC policy implementations only concern themselves with
the originator and last requester. Future implementations and/or other use
cases may also care about the intermediate requesters. The protocol allows for
additional assertions about intermediate requesters to be specified but does not
require it.

3 Example Policy Service Designs
3.1 Internet2 DCN Pilot

Figure 3 An example policy service design where additional information about a subject
and/or resource can be polled from an external Authentication and Authorization (AA)
service and Accounting service.

Figure 3 shows an example design of a policy service for the Internet2 DCN Pilot

service2. There are many ways a policy service could be implemented but this
one is designed to meet the needs defined by the Internet2 community. This
particular policy service works as follows:

 A request comes into the IDC and the IDC then authenticates that user
with an Authentication and Authorization (AA) service.

 Events happen as the IDC schedules the reservation and result in the
following:

A. A notification of the event is sent to the NotificationBroker for
distribution

B. The notification is forwarded to the Accounting service and
recorded

 The IDC needs policy decisions when a create or modify request is
received, after a path calculation (that may just contain the next domain)
and after a path is confirmed (has the full path). This results in the
following process:

1. The IDC sends a check policy request to the policy service
2. The policy service request attributes about the subject and/or

originator (if applicable) from the AA service.
3. The AA service returns any attributes it has
4. The policy service requests usage information for the subject

and/or originator from the accounting service.
5. The accounting service returns the requested usage information
6. The policy service compiles the information and determines if the

action should be allowed or denied. It returns the result to the IDC.
The IDC then enforces the decision.

This design assumes that the IDC only provides the policy service with an
identifier for the user that can be used to lookup any further information it needs.
In the future it may be possible to push information such as attributes but that is
not required in this design.

4 Messages and Types
4.1 checkPolicyRequest
The checkPolicyRequest message is sent from an IDC to the Policy service
when an IDC would like to ask for a policy decision. The checkPolicyRequest
format is described below:
<xsd:complexType name="checkPolicyRequestType">
 <xsd:sequence>
 <xsd:element name="Requesters"
 type="xsd:RequesterListType" />
 <xsd:element name="Action" type="xsd:anyURI" />
 <xsd:element name="Resource"
 type="tns:resourceType" minOccurs="1"
 maxOccurs="unbounded" />

2 https://spaces.internet2.edu/display/DCN/DCN+Pilot

 </xsd:sequence>
</xsd:complexType>

Requesters
An ordered list of entities that have asked for the specified Action to be
performed on the given Resource(s). The list MAY represent an ordered
sequence or requesters in a chain. If it does represent a chain then the
first requester in the sequence is the originator of the action request. The
last item in the sequence represents entity that last forwarded the action
request before reaching the entity that sent the checkPolicyRequest. The
list SHOULD AT LEAST contain the originator and the requester that last
forwarded the action request. It MAY contain intermediate requesters.

Action
Uniform Resource Identifier (URI) representing the action that the subject
wished to perform. Valid URIs for the IDC case are defined in section
4.1.5.

Resource
One or more resources on which the requesters want to perform specified
action. In the case of the IDC this is the reservation. See section 4.1.6 for
more information.

4.1.1 Requesters
The Requesters element lists the entities that requested a specified action on
some given resource(s).
<xsd:complexType name="RequesterListType">
 <xsd:sequence>
 <xsd:element name="Requester"
 type="tns:RequesterType"
 minOccurs="1"
 maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
Requester

A list of one or more Requester elements. It MAY represent a an ordered
sequence of requesters in a chain.

4.1.2 Requester
A requester element describes an entity that requested a specified action on the
given resource(s). This element also identifies the entity’s position in a request
chain if such a chain exists. This element is show below:
<xsd:complexType name="RequesterType">
 <xsd:sequence>
 <xsd:element name="Subject" ref="saml:Subject" />
 <xsd:element name="SubjectAuthentication"
 type="tns:SubjectAuthenticationType"
 minOccurs="0"/>
 <xsd:element ref="saml:Assertion" minOccurs="0"

 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="sequenceNumber"
 type="xsd:integer" use="optional"/>
</xsd:complexType>

Subject
A required SAML 2.0 subject that represents an entity that sent the original
action request or that forwarded the request at some point in a chain. See
section 4.1.3 for more information.

SubjectAuthentication
An optional element that contains a single saml:NameID pointing to where
more information about the Subject can be found. See section 4.1.4 for
more information.

Assertion3

Zero or more SAML 2.0 assertions about the Subject specified by this
Requester element. See [SAML] for a description.

@sequenceNumber
An optional integer attribute that indicates the requester’s location in a
forwarding chain. If this field is specified, then the originator MUST have a
sequenceNumber set to 1. All subsequent Requester elements in the
chain MUST set their sequenceNumber in increasing order with respect to
their location in the request chain as it relates to the originator. This field
SHOULD be set when a chain model is used for requests and MAY be set
for non-chain models (i.e. a tree model).

4.1.3 Subject
The Subject element is defined in SAML 2.0. Its type definition and a description
of how implementations will use each element are provided below:
<complexType name="SubjectType">
 <choice>
 <sequence>
 <choice>
 <element ref="saml:BaseID"/>
 <element ref="saml:NameID"/>
 <element ref="saml:EncryptedID"/>
 </choice>
 <element ref="saml:SubjectConfirmation"
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <element ref="saml:SubjectConfirmation"
 maxOccurs="unbounded"/>
 </choice>
3 The Assertion element will not be used in the first version of the Policy Service
implemented for the Internet DCN pilot service

</complexType>

BaseID, NameID, EncryptedID
Only NameID will be used by near-term implementations of the IDC use
case. The value of name ID will either be the X.509 subject or the
OSCARS user login (if no X.509 subject is available)

NameID@Format
Either urn:oasis:names:tc:SAML:1.1:nameid-
format:X509SubjectName (if an X.509 Subject) or
urn:dcn:oscars:loginName (if an OSCARS login name)

SubjectConfirmation
The Method attribute is always set to
urn:oasis:names:tc:SAML:2.0:cm:sender-vouches. Future
implementations may want to explore different ways to use this field.

4.1.4 SubjectAuthentication
In a Requester element the SubjectAuthentication type defines a location where
information about a Subject can be verified and/or found. Its definition is shown
below:
<xsd:complexType name="SubjectAuthenticationType">
 <xsd:sequence>
 <xsd:element ref="saml:NameID" />
 </xsd:sequence>
 </xsd:complexType>

NameID
A URL where information about the subject can be verified and/or more
information can be found. The URL may point to an identity provider, the
original service that authenticated the request, or some other service.

4.1.5 Action
Currently two URIs are identified for the IDC use case. One is for creating a new
reservation and the other for modifying an existing. They are as follows:

 urn:dcn:oscars:action:createReservation
 urn:dcn;oscars.action:modifyReservation

4.1.6 Resource
A resource has the following type definition:
<xsd:complexType name="resourceType">
 <xsd:sequence>
 <xsd:any namespace="##other" processContents="lax"
 minOccurs="1" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

Any Type

One or more XML elements that describe the resource. In the IDC context
it is a reservationResource element of type createResContent. It contains
all the information of a request such as path, bandwidth and duration.

4.2 checkPolicyResponse
The checkPolicyResponse is returned by the Policy Service to the IDC and
indicates whether the subject is allowed to perform the action on the specified
resource(s). The type definition is below:
<xsd:complexType name="checkPolicyResponseType">
 <xsd:sequence>
 <xsd:element name="allow" type="xsd:boolean" />
 <xsd:element name="reason" type="xsd:string"
 minOccurs="0"/>
 </xsd:sequence>
</xsd:complexType>

allow
A Boolean that’s true if allowed and false if denied.

reason
An optional string describing why a particular decision was made.

4.3 Examples

4.3.1 Alice to Domain A
The following would be in the body of a SOAP request:
<policy:checkPolicyRequest
 xmlns:policy="http://oscars.es.net/OSCARS/policy
 xmlns:idc="http://oscars.es.net/OSCARS"
 xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
 <policy:Requesters>
 <policy:Requester sequenceNumber=”1”>
 <saml:Subject>
 <saml:NameId
Format="urn:oasis:names:tc:SAML:1.1:nameid-
format:X509SubjectName">
 CN=Alice, OU=OASIS Interop Test Cert, O=OASIS
 </saml:NameId>
 <saml:SubjectConfirmation
Method="urn:oasis:names:tc:SAML:2.0:cm:sender-vouches" />
 </saml:Subject>
 <policy:SubjectAuthentication>
 https://domainA.net/AuthN
 </policy:SubjectAuthentication>
 <policy:Requester>
 </saml:Requesters>

 <policy:Action>
 urn:dcn:oscars:action:createReservation
 </policy:Action>

 <policy:Resource>

http://oscars.es.net/OSCARS
urn:oasis:names:tc:SAML:2.0:cm:sender-vouches
urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName
urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName
urn:oasis:names:tc:SAML:2.0:assertion

 <idc:reservationResource>
 <idc:startTime>...</idc:startTime>
 <idc:endTime>...</idc:endTime>
 <idc:bandwidth>...</idc:bandwidth>
 <idc:description>...</idc:description>
 <idc:pathInfo>
 <idc:pathSetupMode>...</idc:pathSetupMode>
 <idc:layer2Info>
 <idc:srcEndpoint>...</idc:srcEndpoint>
 <idc:destEndpoint>...</idc:destEndpoint>
 </idc:layer2Info>
 </idc:pathInfo>
 </idc:reservationResource>
 </policy:Resource>
</policy:checkPolicyRequest>

4.3.2 Domain A to Domain B with Alice as Originator
The following would be in the body of a SOAP request:

<policy:checkPolicyRequest
 xmlns:policy="http://oscars.es.net/OSCARS/policyReq"
 xmlns:idc="http://oscars.es.net/OSCARS"
 xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
 <saml:Requesters>
 <policy:Requester sequenceNumber=”1”>
 <saml:Subject>
 <saml:NameId
Format="urn:oasis:names:tc:SAML:1.1:nameid-
format:X509SubjectName">
 CN=Alice, OU=OASIS Interop Test Cert, O=OASIS
 </saml:NameId>
 <saml:SubjectConfirmation
Method="urn:oasis:names:tc:SAML:2.0:cm:sender-vouches" />
 </saml:Subject>
 <policy:SubjectAuthentication>
 https://domainA.net/AuthN
 </policy:SubjectAuthentication>
 <policy:Requester>

 <policy:Requester sequenceNumber=”2”>
 <saml:Subject>
 <saml:NameId
Format="urn:oasis:names:tc:SAML:1.1:nameid-
format:X509SubjectName">
 CN=DomainA, OU=DCS Test, O=DCS Test, ST=MI, C=US
 </saml:NameId>
 <saml:SubjectConfirmation
Method="urn:oasis:names:tc:SAML:2.0:cm:sender-vouches" />
 </saml:Subject>
 <policy:SubjectAuthentication>
 https://domainB.net/AuthN
 </policy:SubjectAuthentication>

urn:oasis:names:tc:SAML:2.0:cm:sender-vouches
urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName
urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName
urn:oasis:names:tc:SAML:2.0:cm:sender-vouches
urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName
urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName
urn:oasis:names:tc:SAML:2.0:assertion
http://oscars.es.net/OSCARS
http://oscars.es.net/OSCARS/policyReq

 </policy:Requester>
 </policy:Requesters>

 <policy:Action>
 urn:dcn:oscars:action:createReservation
 </policy:Action>

 <policy:Resource>
 <idc:reservationResource>
 <idc:globalReservationId>
 ...
 </idc:globalReservationId>
 <idc:startTime>...</idc:startTime>
 <idc:endTime>...</idc:endTime>
 <idc:bandwidth>...</idc:bandwidth>
 <idc:description>...</idc:description>
 <idc:pathInfo>
 <idc:pathSetupMode>...</idc:pathSetupMode>
 <idc:layer2Info>
 <idc:srcEndpoint>...</idc:srcEndpoint>
 <idc:destEndpoint>...</idc:destEndpoint>
 </idc:layer2Info>
 <idc:path>....</idc:path>
 </idc:pathInfo>
 </idc:reservationResource>
 </policy:Resource>
</policy:checkPolicyRequest>

4.3.3 Alice (OSCARS Login) to Domain A
The following would be in the body of a SOAP request:
<policy:checkPolicyRequest
 xmlns:policy="http://oscars.es.net/OSCARS/policy
 xmlns:idc="http://oscars.es.net/OSCARS"
 xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">

 <policy:Requesters>
 <policy:Requester sequenceNumber=”1”>
 <saml:Subject>
 <saml:NameId
 Format="urn:dcn:oscars:login"
 NameQualifier=”@DomainA”>
 alice
 </saml:NameId>
 <saml:SubjectConfirmation
Method="urn:oasis:names:tc:SAML:2.0:cm:sender-vouches" />
 </saml:Subject>
 <policy:SubjectAuthentication>
 https://domainA.net/AuthN
 </policy:SubjectAuthentication>
 <policy:Requester>
 </saml:Requesters>

urn:oasis:names:tc:SAML:2.0:cm:sender-vouches
urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName
urn:oasis:names:tc:SAML:2.0:assertion
http://oscars.es.net/OSCARS

 <policy:Action>
 urn:dcn:oscars:action:createReservation
 </policy:Action>

 <policy:Resource>
 <idc:reservationResource>
 <idc:startTime>...</idc:startTime>
 <idc:endTime>...</idc:endTime>
 <idc:bandwidth>...</idc:bandwidth>
 <idc:description>...</idc:description>
 <idc:pathInfo>
 <idc:pathSetupMode>...</idc:pathSetupMode>
 <idc:layer2Info>
 <idc:srcEndpoint>...</idc:srcEndpoint>
 <idc:destEndpoint>...</idc:destEndpoint>
 </idc:layer2Info>
 </idc:pathInfo>
 </idc:reservationResource>
 </policy:Resource>
</policy:checkPolicyRequest>

5 Limitations
 The current checkPolicyResponseType is not rich enough to handle

advanced use cases. One example is a case where a service wants to
input a topology graph and have the output be a pruned version of the
input based on policy.

 The expected implementations assume that attributes from a user can be
pulled from a local AA service. Further investigation into pushing SAML
assertions and/or a distributed mechanism to lookup attributes needs to
be explored.

 The model described does not address all issues of transitive trust. In the
case of an IDC information passes through entities with which a given IDC
may have no relationship. The model discussed assumed that anything
given from a neighbor, regardless of where it travelled before, would be
trusted or trust could be established by an external means. In the future
this assumption may not be sufficient and these relationships should be
better defined.

6 References

[SAML] http://saml.xml.org/saml-specifications
[IDC] http://www.controlplane.net/

	1Goals
	2Use Cases
	2.1Single Interdomain Controller
	2.2Multiple Interdomain Controllers
	

	3Example Policy Service Designs
	3.1Internet2 DCN Pilot

	4Messages and Types
	4.1checkPolicyRequest
	4.1.1Requesters
	4.1.2Requester
	4.1.3Subject
	4.1.4SubjectAuthentication
	4.1.5Action
	4.1.6Resource

	4.2checkPolicyResponse
	4.3Examples
	4.3.1Alice to Domain A
	4.3.2Domain A to Domain B with Alice as Originator
	4.3.3Alice (OSCARS Login) to Domain A

	5Limitations
	6References

