

Scalable Privacy: An NSTIC grant for the Identity Ecosystem

Scalable Privacy

- Grant Basics
- Key deliverables
- How the pieces fit together and create infrastructure

Basics

- Part of the Identity Ecosystem initiative (NSTIC)
 - Governance the IdESG
 - Pilots to inform and advance the ecosystem
 - Scoped to US but with global implications
 - http://nist.gov/nstic/
- Two year grant (second year pending)
 - Activity centers are Brown (anonymous credentials), CMU (Privacy Manager), Wisconsin (citizen-centric schema), along with a set of campuses for leadership in the spectrum of scalable privacy issues
 - A small group of MFA Pilots and a large scale MFA Cohortium
- Pilot is distinct from but actively engaged with IdESG

Key deliverables

- Promotion of two factor authentication
 - Good privacy begins with good security
- Schema for common use
 - A user-manageable but broadly useful set of attributes
- Privacy managers
 - For users to control the release of attributes
 - Putting the informed into informed consent
- Implementing anonymous credentials at scale
 - Engineering into infrastructure privacy protecting technologies
- An attribute ecosystems and metadata strategies to support the above

Promotion of multi-factor authentication (MFA)

- Good privacy begins with good security
- MFA addresses a significant number of security threats
- A variety of second factor alternatives are now viable USB devices, NFC devices, cell phones, certificates, etc and technology can bridge across them.
- Grant will support wide-scale deployments of different technologies at three lead schools (MIT, Utah, Texas) with harvesting of planning processes
- Facilitation will support a cohort of additional schools with their deployments, leveraging the lead school activities.

The MFA Cohortium

- A focused and facilitated initiative to help scores of institutions move along with multifactor authentication
- Comprehensive approach
 - Technology and Policy
 - Deployment and Maintenance
- Large scale but finite length initiative (18 mo)
- MFA Technology agnostic
- Leaving behind key artifacts
 - Plans, ROI, Rollout Strategies, etc
 - Critical code contributions (e.g. Shib and CAS login handlers)
- Will leverage Net+ security service offerings where possible

Privacy foundational elements

- Common attributes and schema
- Privacy managers
 - Controls the release of personal attributes
 - Spans user contexts
 - Relies on the trusted metadata for informed consent.
- Trusted meta-data
 - About the relying party and the IdP
 - Vetted by the federation and by third-parties
- Anonymous credentials
 - Integrated at key junctions into the ecosystem, leveraging existing infrastructure
 - In software, use of metadata, and user experience
- Pushing policy issues

The User and Roles

- A person operates in one of several roles when on-line:
 - As a citizen
 - At local, state and national levels
 - As a worker-employee
 - With other businesses, with governments, with consumers
 - As a consumer
 - As a physical entity
 - Geolocation, age, personal preferences, etc
 - Maybe one or two others
- In managing their privacy, what parts of the user experience should be consistent between roles and what may be different?

Common attributes, schema and bundles

- A small set of attributes, organized into schema and bundles, that span the needs of a broad range of applications
- Primarily "citizen" oriented, but with significant value to many other use cases, including consumer and business.
- Intended to be user-manageable
 - Through privacy managers
 - With informed consent
 - Leveraging existing and emerging trust and security infrastructure

Of contexts, credentials, and bundles

Privacy managers (Carnegie-Mellon Univ)

- Consoles to help users manage the release of attributes
- Can leverage trust, informed consent, default settings and preferences, etc.
- Must be carefully engineered
 - Across the variety of contexts
 - Across a variety of credential types
 - In ways that are user-effective
- Similar, less leveraged approaches are successfully deployed in a few settings.

Attribute authorities

- Entities that generate additional attributes about an individual (but do not provide other identity services)
- Examples include: Agencies (grant information, security clearances, etc) identifier services (ORCID, SSN, Driver's licenses, etc), auditors and compliance organizations, etc
- Many open issues exist:
 - Linking between attribute authority and {IdP, RP, third party, etc}, including LOA
 - Uni-directional or bi-directional, One time vs regular vs upon-change
 - Policy and contractual frameworks

Anonymous Credentials (Brown University)

- Special credentials issued by attribute authorities
 - Encrypted at rest; reduces privacy spills
 - When queried by RP, will do minimal disclosure of encoded attributes
 - E.g. Over 18, True/False on specific sets of attributes, such as citizen, medical, IMBY discussions, etc.
 - Can be done so that IdP does not know either the values being released or the RP's requesting information
- Need infrastructure to support deployment at scale
 - Delivering credentials to user and storing, scalable query controls, audit, policy issues, integrating with privacy management

Metadata and trust implications

- At scale, there needs to be ways to establish and convey trusted information about applications and services to users
 - Implies "vetting" or auditing processes for services
 - Implies metadata that can convey this information in real time to users
 - Implies trust in the metadata
- Dynamic metadata services
 - Work is already underway on this in other places
- Federation operations need to evolve
- Auditing applications
 - For "privacy-preserving" approaches (minimal attribute requests, informed consent, proper handling and disposal, etc.), for COPPA compliance, for ...
 - Prototype approaches are successful; market needs to grow

Significant pilots and testbeds

- Intent is to facilitate significant deployments through:
 - Three partially supported leadership deployments of MFA at MIT,
 Texas, and Utah
 - Focus testing of privacy managers through development cycles
 - Identify and leverage existing IdM consortia to pilot, with active support and facilitation, both privacy managers and anonymous credentials
 - Create a broader cadre of observing institutions that participate in the planning and deploys, including attribute/schema development
- Work actively with related communities, from registrars to researchers, to help them understand the issues and opportunities

How it all fits together

- A user, in their context as a university student, uses a privacy manager to release their institutional affiliation to student discount services
- A user, in their context as a citizen, uses a privacy manager to release sufficient residence information that allows them to then anonymously post to the neighborhood-only wiki.
- A user, in their context as a consumer, uses a privacy manager to manage the release of preferences (e.g. zip code, preferred language, geolocation, etc) to customize commercial services while preserving privacy
- A user, in their context as a worker, uses a privacy manager to release anonymous credentials (such as security clearances and personal medical information) to third party contractors.
- A parent uses a privacy manager to manage their children's on-line privileges to COPPA compliant applications

