OSIDM4HE

Ildentity Management
OpenRegistry

Rutgers Implementation
May 04, 2012

Agenda

e Partl- Overview
— Project Overview
— What Is OpenRegistry
— Benefits
— Approach
— Project Status (Rutgers)

e Certification 1
e Certification 2
e 1stProduction

« Part 2 — Component/Service Architecture

— Component Architecture
— Data Model

— Auditing

— Road Map

e Part 3—-Demo
e Part4 — Code Review

PART 1

OpenRegistry Overview

Project Overview

= Open source software application
— Initiated by Rutgers University - Mar 2008
— Became a Jasig Incubator project — Jan 2009
— SFU joined the project - Late of 2009

What Is OpenRegistry

< An Open Source identity Management System, a
place for data about people affiliated with your
Institution

- ldentity store, but generally NOT authoritative

— Systems of Record (SoRs) are authoritative for most
data (e.g. PeopleSoft, Student System, etc.)

< ldentifier assignment (NetlD, RCPID, External
ID,etc.)

< ldentity reconciliation for multiple SoRs. It
combines distributed identity information into
single identity records

OpenRegistry High Level Benefits

= Capture information about all University
populations (e.g. students, staff, faculty, guest,
visitors, alumni, retirees, emeritus, continuing
ed, etc...)

= Faster propagation of data from SoRs , real time
where possible

 Role Base access control

< Automating User Lifecycle Management
(On-Boarding, Off-Boarding, Approvals, etc.)

= Regulatory compliance
— Provide timely audit and attestation
— Provides long term, sustainable model

OpenRegistry Open Source Approach

e Generic architecture and data model
< Agile development process

< Multiple levels of engagement with the Higher Ed
community

— Discuss: Review design documents, identify gaps and
changes

— Develop: Help write code, documentation, etc
— Deploy: Run OR as an IDMS (when released)

— Donate: Contribute resources to help with development
and outreach

— Encourage others to join the work force

= Build on lessons learned from other Jasig
successful Open source projects (CAS, uPortal)

Project Status @RU(OpenRegistry Core)

= Generic data model designed and stable

< Core domain objects and base service layer code
completed

= Authorization module completed and tested
= Web Ul authentication is integrated with CAS

< Reconciliation/Calculation Enhancement
completed

< Normalization and Standardization completed
- RESTful API’'s majority designed and completed

« ldentifier assignments majority completed for
first Production release

Project Status (Certificationl Release)

= Scope :
— Initial load from legacy People Data Base (PDB)
— Student Record system batch feed
— HR Record (PeopleSoft) system batch feed
— PDB-Like views (Used for Validation)

Project Status (Certificationl Release)

e Time Line : May, 2011
< Status: Completed
= Deployed In Pre Production Environment

< Worked with Real production data from two SoRs
(HR and Students)

< Worked In parallel with the legacy People Data
Base (PDB)

- Ran Validation Freqguently

e Compared results from OpenRegistry repository
and legacy PDB

< Used Ul to view person for validation
 Used Views for validation

10

Project Status (Certification2 Release)

- Scope:

— Help Desk Ul’s
- Add/Update person
- Add/Update role
= View complete person
= Generate Activation Key
= Authorization Model

— Disclosure
= Person level
= Attribute level

— REST API’s
- Email Address Update
= NetID change
= Generate Activation Key

11

Project Status (Certification2 Release)

< Time Line : September , 2011

- Status: Deployed. New Requirements were
added

— Handle Early Faculty/Staff Emergency Role Requests and
Approvals (when new Fac/Staff not processed in HR yet)

= Deployed In Pre Production Environment

12

Project Status (0.9 — Go-Live Release)

- Scope:
— User management Tool Ul

< Every Thing from Certification 2
- Split/Join person
= Authorization Tools (Administration/Delegation)
= Guest Management
< Herd Assignments
- Early Faculty/Staff
= NetlD Change Authorization

— Registry Reconciliation Enhancements
= Every Thing from Certification 1 and 2
< LDAP Real Time Provisioning via Camel Routing
= Process Students’ personal email from SRDB Data Feed

= New Add Work Flow (Support Early Faculty/Staff
Emergency Provisioning requests, not yet in HR system)

13

Project Status (0.9 — Go-Live Release)

- Scope:
— RSET API

= Every Thing from Certification 2
= Support Of non-Person Entities (Service Accounts)

— Email Services OpenRegistry Integration
= RATS Updates Display Email Address via REST API

— Personal Info/OpenRegistry

- Update User’s Information on Behalf of SoRs (email
address, emergency contacts, etc..)

— Legacy-Like Views
- Used for Validation /Comparison Only

14

Project Status (0.9 — Go-Live Release)

- Scope:
— Legacy BackSync from OpenRegistry

- Data Feed from PDB to downstream systems will Continue for This
Phase

= Clients integrated with PDB do NOT need to change code for initial
release, allowing more transition time

— Support new ID Card # (RCN)

15

Project Status (0.9 — Go-Live Release)

e Time Line : August, 2012

- Status: Completed
— System Integration Testing: May 2012
— Target Go-live date : August 3, 2012

16

PART 2

Component Architecture

17

Component Architecture

===

Identify

2
‘o
[
(]
o
o

18

Component Architecture (Rutgers)

- Load: Data is loaded from batch oriented sources into the "raw"
(r) tables rTables. Data is loaded as is, and represents what was
provided by the System of Record (SOR). Data provided from
real-time sources does not need to be staged, and is passed
directly to Validate

- SOL Loader (Raw data) : Processing data in bulk from the Source
of Records. For example loading data from HR DW into pre-
processing scratch tables

= rTables: Tables used to store raw SoR data provided for processing

19

Component Architecture (Rutgers)

Validate: Validation is a check of the inbound data against the defined
syntax agreed upon (contract) with the SOR, as well as enforcement of the
security model that determines what data the SOR is allowed to assert. For
example, GivenName is a required field

Normalize: Normalization is the process of transforming the data
according to institution specific rules designed to make all data look the
same regardless of how it is represented by the SOR. For example
Transforming inbound data from UPPER CASE or other format to Mixed
Case

Standardize: Standardization is the process of mapping the data from
SOR specific interface definitions to the standard OpenRegistry data model.
After standardization is complete, data is stored in the "standardized" (s)
tables s Tables. For example, Mapping SORID which is “char” type to
OpenRegistry as “varchar2”

20

Component Architecture (Rutgers)

sTables: Tables used for standardized data, which will be processed for
unigueness and changes

Reconcile: Reconciliation is the process of matching records from one
SOR with those already known to the system. It is key to maintaining a
single identity for a person regardless of how many sources they come
from. Reconciliation is configurable based on the attributes available in the
"standardized" (s) tables, and on a per-SOR basis. That is, SORs that may
not provide sufficient quality data for reconciliation to take place may be
reconciled differently from those that do

— There is a generic implementation "reconciler" provided in the Open
Source community, which can be extended to meet the institution's
specific need. This reconciliation module is a plug-in within the product.
It can be integrated with an external ID match with some work effort

21

Component Architecture (Rutgers)

« Reconcile (ldentity Maching approach):

— In Rutgers, we implemented/extended the generic "reconciler” interface,
based on the legacy people data base approach (pretty complex). This
approach considers the following Identifiers for matching :

High Assurance: (SorlD, Institute unique ID, SSN, NetID)
Medium Assurance: (Name, DOB)
Low assurance: (Email, Address, Phone)

— Identifiers (used for ID matching)

— SorlD : This identifier is created by the authoritative source of record, for
example employee ID in HR system or Student ID in Student system

— Institute unigue ID: (Inherited from the legacy system): This is unique IDM
identifier that is generated by the registry and fed back to the System or
Records . It can be used to identify multiple role user (staff/faculty will have
the same Rutgers unique identifier, but different SoRID'S)

— SSN: Can be real or pseudo

— NetID: User Name, generated by the registry and fed back to the System or
Records

22

Component Architecture (Rutgers)

 Reconcile (ldentity Maching approach):
— Match Results:
— Conflict: a human intervention is needed to resolve
— No match: New record
— Match: existing user , update person

— New Approach

— Under Construction: analyzeNonUniqueMatches
protected final int HIGH_CONFIDENCE = 90;
protected final int MEDIUM_CONFIDENCE = 50;
protected final int LOW_CONFIDENCE = 25;

— Looking for new Ideas

For details OR-Rutgers response for ID match:
https://spaces.internet2.edu/x/p56VAQ

23

Component Architecture (Rutgers)

Identify: Identification is the process of assigning identifiers to newly

added persons. Identifier assignment is configurable based on locally

defined formats . Example of identifiers:
— SSN (pseudo)
— RUID
— RCPID
— 1D
— NETID
— EXTERNALID
— EMPLID
— RCN

Elect: Election is the process of deciding which conflicting data provided

by multiple SORs is the "true" data for a person. For example, if two SORs
assert a different official name for the same person, only one name can be
treated as official by OpenRegistry

24

Component Architecture (Rutgers)

= Calculate: Calculation is an Attribute Calculation Engine, which finalizes
the data elements and store them in the ¢ Tables. For example
calculating users' disclosure default setting based on user’s role

- cTables: Tables used for storing Calculated “finalized” data

- EXport: Data is exported to Downstream Systems via batch, real-time,
and provisioning interfaces . For example utilizing Camel Routing Engine to
update Messaging queues ,data base tables , LDAP or flat files

25

Component Architecture (Rutgers)

Employees

Continuing
Ed

John Smith
DOB Guest
SSN

@

ldentifiers
NetlD:js12345
RCPID:12367
[ID:JS12345
ExternliD:909123567
Role (staff/student)
Fname: john

Lname: smith

D

Calculated Person

o

26

Component Architecture

—— = Method Invocation
—— —— P Event Motification

Real Time API Weh Interface Update Queue
REST, SOAP C.'S"Ir" XML

Error Manager

Registry
C:redm tial Identity Identifier
Management | Reconciliation | Assignment
Plugin Plugin Plugin

27

Component Architecture (Rutgers)

 Inbound Interfaces

— Batch : The batch component is responsible for processing
data feeds from the System of Records based on fix schedules.
Data is aggregated for processing in staging tables, which then
In turns call the OpenRegistry core service layers for
processing

— Open Registry provides RESTful HTTP APIs to programmatically
access significant resources of the system and change their server-side
state. The APIs are simple HTTP resources which conform to the basic
REST (REpresentational State Transfer) principals i.e. the exposed
resources are identified by unique URIs and are conformed to the
'uniform interface' i.e. basic set of the standard HTTP methods such as
GET, PUT, POST, DELETE

28

Component Architecture (Rutgers)

 Inbound Interfaces

— Avallable RESTful APIs (https://wiki.jasig.ora/display/ORUM/RESTful+API)

— Activation Key: Represents an activation key, which can be verified,
invalidated, or created via a RESTful API

— Calculated Person Resource: Allows a user to manipulate a person's
system of record via a real-time API

— Email Resource: Allows a client to update or add an email attached to a
particular person's system's of record role's affiliation

— NetlD Management Resource: Allows a system to manipulate a person's
netlds via a real-time API

— SOR Person Resource: Allows a system to manipulate a person's system of
record record via a real-time API

— SOR Role Resource: Allows a system to manipulate a person's system of
record role record via a real-time API

— Non-Person Resource: Allows a system to assign NetID’s to a non-perosn
entity

29

Component Architecture (Rutgers)

 Inbound Interfaces

— Web Ul (SoR Data) : Integrating an application directly with
OpenRegistry’s Libraries. For example, OpenRegistry User
Management Tools. These tools offers:

— Create and manage of Guest accounts

— Process approval (Used in processing early faculty staff request)
— Update on behalf of SoR (limited to the super admin)

— Help Desk Tool

— View Person

— Generate activation keys for users

— Split/Join operation (limited to the super admin)

- Security
— Spring Security is being used by OpenRegistry to secure resources.
Local deployments should modify the original authentication mechanism
deployed with OpenRegistry to fit their needs

30

Component Architecture (Rutgers)

- Directory Builder: OpenRegistry can facilitate the building of
On-Line Directory service. The Directory builder utilizes updates
from the OpenRegistry event-driven messaging service and keep
up-to-date information about users

- Provisioning Engine (Road Map): : OpenRegistry can facilitate
the building of a provisioning engine that can consume updates
from the OpenRegistry event-driven routing/messages service and
create accounts in the underlying downstream systems

< Business Rules Execution Engine (Road Map): . A Rule
engine can be integrated with the OpenRegistry to validate
business rules at runtime without the need to recompile and
redeploy the OpenRegistry Software. Business rules and policies
are dynamic in nature, for example, changing the criteria for
offering new service based on a new role or extending the role’s
expiration date based on service account usage

31

Component Architecture (Rutgers)

< Credential Management “Plug-in’’: OpenRegistry stores
activation keys that can be utilized for Identity activation and
password management

- Workflow Engine (Roa Map): : Is Multiple processes/tasks
connected to control identity life cycle and management . For
examples:

— Control creation, deletion, enabling and disabling of user
accounts

— Sending the activation key via email

— Approval handling: Email for sponsors to extend the role of a
guest account or to request a sponsor approval to allow
creating a new guest account

— Send messages to Resolvers to fix data anomalies that are
captured during identity reconciliation (effective error
handling during provisioning)

— Improve account attestation by sending messages via email to
certify that the user who needs certain access privilege is in
deed qualified

— Can be scheduled : Send notification 60 days before Guest role
expires to sponsors 32

Component Architecture (Rutgers)

< Qutbound Interfaces

— Camel Routing Engine: Providing a framework to
asynchronously , in real time, update the various backend
resources (DB, LDAP, Web Services, Flat files, Messaging
queues). The Routing engines captures the following events:

— Creating new persons

— Creating new non-person entities (Program accounts)
— Updating existing persons

— Updating specific identifiers such as NETID

— Updating roles information such as updating email address on a
role

— Updating disclosure information
— Closing a role

33

Component Architecture (Rutgers)

< Qutbound Interfaces

— Message Queue (Still as proof of concept) : Providing an
event driven middleware (real/near time) to send messages to
the downstream systems about changes in the OpenRegistry.
Messages contain data elements changes. This middleware can
serve as a provisioning engine via customized connectors that
consume the messages and update the downstream system in
near real time. For example, we can create Sakai’s connectors
that consume data from the OR Message Queue and directly
update Sakai DB (Future Implementation)

— Batch : Providing OpenRegistry data in bulk (fixed schedule) to
downstream systems. This interface directly reads data from
OpenRegistry tables and export it in a simple form

— Report Server : Providing reports about OpenRegistry . For
example Number of new users, new roles , approvals ,etc.. 34

Component Architecture (Rutgers)

< Qutbound Interfaces

— Views: Simplify the OpenRegistry data model by exposing the
relevant users' tables from the OpenRegistry to the
downstream systems

35

Component Architecture (Rutgers)
3

Data Flow
Employees Guest
(HR)
Workflow
Email to Approvers
End-Users
.V Resolvers
Open --- } @

Registry

Apps / Processes

T T G [T ,
alrd

Downstream Resources 36

RUTGERS
Component Architecture (Rutgers)

Inbound : Batch Interface for Employees data feed

RIAS DW
Views

37

RUTGERS
Component Architecture (Rutgers)

Inbound : Batch Interface for Students data feed

Database server (acs1)
SRDB /v06/oradata/acs1/scratch
Server idm_srdb_1.dat type 1 records
Flat files fdmisrdbj.dat type 2 records \NR\TE
idm_srdb_4.dat type 4 records | —
idm_srdb_5.dat e 5 records
t

idm_srdb 0.dat control counts
idm_srdb_6.dat date record

&°

Component Architecture (Rutgers)
Outbound :

(DY) 2idoL swr

;i

39

Component Architecture (Rutgers)

Outbound : (Camel Routing) I G B S

Component Architecture (Rutgers)

- Data Model
— https://wiki.jasig.org/display/OR/Data+Model (complete data model)
— SOR Level
— Person
— Roles
— Address
— Phone
— Disclosure

41

UTGERS

Component Architecture (Rutgers)

PRS_SOR_PERSOMNS
— — PRS_MNAMES
i BRECORD 1D
PR L=
SoR Lewvel DATE OF BIRTH
CEMNDER | et Faa P ILY NS E
FPERSOM 1D G EMN_ NS N E
o PAID CHUE__ PSR E
SOURCE_SOR_ID P REFI X
e SIUFFI
FHK2 |sSOoR_PFPERSOM_ID
- FRL rLANIE_ T
PRS DISCLOSURE PRS ROLE _RECORDS
P =3 P RECORD 1Dy
DISCLOSURE__CODE TERMINATION [LATE
UPDATED _DATE PERCEMNT_TIME
WVITHIN _ GRACE_PERIOD () =)
FraL SOR_PERSOM_ID SPOMSOR_I1D
AFFILLATION DATE
TITLE
FHS AFFILLATIOM_T
FK3 O RGAMIZATIOMNAL _ UNIT 1D
Fi7 SOR_PERSOMN_ID
PRS URLS Fa PERSOM_STATUS_ T
Flz SPOMNSOR_T
i =1 —— " rke SYSTEM_OF_RECORD__ID
Fhol TER M INATICOMN_ T
URL i
FK2Z ROLE RECORD 1D
FK1L ADDRESS_T
PRS_ADDRESSES
P L=
BLOG_ MO
cITY
LINEL
LIRGE 2
LIFE= PRS_EMAILS
P OSTAL_CODE
OO PO P =
UPDATE DATE
FK1 | cOUMTRY_ID 1 | AoDReee T
Fr REGIOMN_I1D FK2Z ROLE REEORD o
Fra ROLE_RECORD_ID - —
FKZ2 | ADDRESS T

PRS_FPHOMNES
P =]

AREA_CODE

LU MTRY OO DE
EXTEMSICMN
PHOMNME_MUMNMBER
PHOMNE_LINE_ORDER
UFPFDDATE__DaTE

FH2 ADDDRESS_T

FHL PHOME_T

FK3 ROLE_RECORD_I1D> 42

Component Architecture (Rutgers)

- Data Model
— Calculated Level
— Person
— Roles
— Address
— Phone
— Disclosure

43

UTGERS

Component Architecture (Rutgers)

PRC COMNTACT PHOMNES

=]

AREMA_CODE
COUMTRY_CODE
EXTEMSICON
PHOME_MUMBER
PHOME_LINE_ORDER
UPDATE_DATE
ADDRESS_T
PHOME_T

PRC _DISCLOSURE

1

Calculated Lewel p—
PRC_ROLE _RECORDS PRC_FPFERSOMNS
P [T=% P (13
TERMIMATION_ DATE ACT _KEY_ _EMND_DATE FKE2
PERCENT_TINME ACT_KEY_LOCK Fr1
PRS_ROLE_ID EE—— ACT_KEY_LOCK_EXPIRATION
SPOMNSOR_ID ACT_KEY_START_DATE
AFFILIATION_DATE ACTIWVATION _KEY
TITLE DATE_OF_BIRTH PK
FKS AFFILLATION_T GEMDER
FIZ ORGAMNIZATIOMNAL LUMNIT_ID FK1 COMTACT_ERMAIL_ID
FKE PERSOMN_ID FK2 COMNTACT _PHOME_ID
Fia PERSOM_STATUS_T & Era
Fl2 SPOMNSOR_T

FE1 TERPAIMNATION_T

PRC_IDENTIFIERS

PR =}

PRC_ADDRESSES

CREATIOMN_DATE
IS_DELETED

DISCLOSURE_CODE
UPDDATED_ _DATE
WWITHIMN_GRACE PERIOD
PERSCOM_ I

DELETED _DATE
MOTIFICATION_DATE

P 1D IS_ FPFRIMARY

IDEMTIFIER

?::_..E.,G_NO FHZ PERSOM_ID

LIMNEL FKL IDEMTIFIER_T

LINEZ2

LINES

POSTAL CODE PRC_PHONES

ROOM_MNO P [}

UPDATE_DATE

PRD_IDENTIFIER_TYPES

P

IDDENTIFIER T

DELETED
DESCRIPTIOM
FORMAT
MODIFLABLE
MNAMNE
NOTIFIABLE
FPRIWVATE

FK1 COUMNTRY _ICY AREA_CODE

FKAa REGIOM_ID COUMNTRY_CODE
FHKZ ROLE_RECORD_ID EXTEMSICMN

FK= ADDRESS_T FHOMNE_MNUMBER

FHOMNE_LINE_ORDER
UPDATE_DATE

FK3 ADDRESS_T
FK1L PHOME_T
FHE2 ROLE_RECORD_ID

PRC_MAMES

PK o
FAMILY AN E
FAMILY _COMPARISOMN WALUE
GIVEMN_MNANE
SGIWEMN_ CORMPARISOMN_ WaLLIE
MIDDLE_ MARE
1S_OFFICIAL_MNAME
1S_PREFERRED_MNANME
PREFIX
MAME_SOURCE_ID
SUFEFEIX

FK2 | PERSON_ID

FK1 | MAME_T

et

Component Architecture (Rutgers)

AUTH_USERS

PE | 1D

«® Data MOdeI DESCRIPTION

IS_EMNABLED

— Authorization USER. NAME
— Groups
— Authorities AUTH_USER_GROUP
— Users Pk | SROUE 1D

AUTH SROUPS

PK | ID

DESCRIPTIOMN
IS_ENABLED
GROUP_MNAME

SAPFTH_GROUF_AUTHORITY

PK | GROUP 1D
FK | AUTHORITY 10y

AUTH_AUTHORITIES
PE | ID

AUTHORITY_MNAME
DESCRIFTIOMN

45

Component Architecture (Rutgers)

AUX PROGRAMS

PK v

< Data Model
... AFFILIATION_DATE

— Non-person entities PROGRAM_NAME
SPONSOR_ID

TERMINATION_DATE
— Aux_Programs FK1 | SPONSOR_T
— AUX_identities

PRD_IDENTIFIER_TYPES
AUX_IDENTIFIERS PK
IDENTIFIER T
PK |ID
DELETED
CREATION_DATE DESCRIPTION
IS_DELETED > FORMAT
DELETED_DATE MODIFIABLE
MOTIFICATION_DATE MAME
I5_PRIMARY MOTIFIABLE
IDENTIFIER PRIVATE
FK1 | PROGRAM_ID
FK2 | IDENTIFIER_T

46

UTGERS

Component Architecture (Rutgers)

- Data Model
— Audit
— All tables follows the same

SPRINGSECURITYREVISIONENTITY
PK | 1D AUD_PRC_PERSONS
TIMESTAMP — Pk D
USERNAME PK,FK1 | REV
> REVTYPE
ACT_KEY_END_DATE
ACT_KEY_LOCK
ACT_KEY_LOCK_EXPIRATION
ACT_KEY_START_DATE
ACTIVATION_KEY
AUD_PRS_SOR_PERSONS DATE_OF BIRTH
PK BRECORD_ID GENDER
PK,FK1 | REV CONTACT_EMAIL_ID
CONTACT_PHONE_ID
REVTYPE
DATE_OF_BIRTH
GENDER
PERSON_ID
1D
SOURCE_SOR_ID
SSN

a7

Component Architecture (Rutgers)

- Data Model
— Reference tables
— Countries
— Regions
— Data Structure
— QOrganizational Unit

48

PART 3

Demo

49

PART 4

Code Review

50

Code Review

« Election

— https://source.jasig.org/openregistry/trunk/openreqistry-
api/src/main/java/org/openreqistry/core/service/FieldElector.java

— https://source.jasig.org/openredgistry/trunk/openreqistry-
api/src/main/java/org/openreqistry/core/service/SorRoleElector.java

All elector are configured the same way, below is the example for dob elector
<bean class="edu.rutgers.openregistry.core.service.DateOfBirthElector" id="birthDateFieldElector">
<property name="rolePriority">
<list>
<value>FACULTY</value>
<value>STAFF</value>
<value>FOUNDATION</value>
<value>STUDENT</value>
<value>ADMIT COMING</value>
<value>SUMMER STUDENT</value>
<value>WINTER STUDENT</value>
<value>STUDENT WORKER</value>
<value>GUEST</value>
<value>ALUMNI</value>
</list>
</property>
</bean>

51

RUTGERS
Code Review

- Person Service

— https://source.jasiqg.org/openreqistry/trunk/openreqistry-
api/src/main/javal/org/openreqistry/core/service/PersonService.java

- ldentifier Assigned
— https://source.jasiqg.org/openreqistry/trunk/openreqistry-

api/src/main/java/org/openreqistry/core/service/identifier/IdentifierA
ssigner.java

 Reconciler
— https://source.jasig.org/openreqistry/trunk/openreqistry-
api/src/main/java/org/openreqistry/core/service/reconciliation/Recon
ciler.java

52

RUTGERS
Code Review

- Name Aspects (hormalize)
— https://source.jasiqg.org/openreqistry/trunk/openreqgistry-repository-
Jpa-
Impl/src/main/java/org/openregistry/core/aspect/LastNameAspect.ja
va

— https://source.jasig.org/openredgistry/trunk/openreqistry-repository-
jpa-
Impl/src/main/javal/org/openreqistry/core/aspect/FirstNameAspect.ja
va

53

RUTGERS

Code Review (Normalization)

<bean name="capitalizationAspect"
class="org.openregistry.core.aspect.CapitalizationAspect"
factory-method="aspectOf">
<property name="defaultCapitalization" value="CAPITALIZE" />
<property name="overrideCapitalization">
<map>
<entry key="name.given" value="NONE" />
<entry key="name.family" value="NONE" />
</map>
</property>
</bean>

<bean name="firstNameAspect"
class="org.openregistry.core.aspect.FirstNameAspect"
factory-method="aspectOf">
<property name="disabled" value="false" />
</bean>

<bean name="lastNameAspect"
class="org.openregistry.core.aspect.LastNameAspect"
factory-method="aspectOf">
<property name="disabled" value="false" />
</bean>
</beans>

54

Code Review

- Camel Routing

— Aop is being used in OpenRegistry to capture the events (add
,update). Aspects then invoke camel to log events in database
table.

Route for Camel Producer:

<route id="person-event_queue" shutdownRoute="Defer">
<from uri="seda:person-event?concurrentConsumers=1"/>
<to uri="jpa:edu.rutgers.pdb.domain.ldmEventQueue"/>
</route>

55

RUTGERS

Code Review

- Camel Routing

Route for Camel Consumer:

<!-- Event message flow entry point -->
<route id="person-event-processor" shutdownRoute="Defer">
<from uri="direct:person-event-queue-processor"/>
<choice>
<when=>
<simple>%${in.body.eventType} == 'PERSON_CREATED_EVENT'</simple>
<to uri="direct:person-created"/>
</when>
<when=>
<simple>%${in.body.eventType} == 'NETID_CHANGED'</simple>
<to uri="direct:person-updated"/>

</when>

<when>
<simple>%${in.body.eventType} == 'NONPRIMARY_NETID_ADDED'</simple>
<to uri="direct:person-updated"/>

</when=>

<otherwise>
<throwException ref="unknownEventTypeException"/>
</otherwise>
</choice>
</route>

56

Code Review

« RestFul API’s
— https://wiki.jasiqg.org/display/ ORUM/RESTful+API

- Authentication/Authorization

— https://wiki.jasiqg.org/display/ ORUM/Authentication+and+Authorizati
on

57

RUTGERS

Code Review

- Authentication/ZAuthorization

bean id="filterInvocationInterceptor"
class="org.springframework.security.web.access.intercept.FilterSecuritylnterceptor"

p:authenticationManager-ref="authenticationManager"
p:accessDecisionManager-ref="accessDecisionManager">
<property name="securityMetadataSource'">
<sec:filter-security-metadata-source path-type="ant" use-expressions="true">
<!-- securing email resource-->

<sec:intercept-url pattern="/**/email*" access="hasAnyRole('ROLE_EMAIL_READ','ROLE_ADMIN")"
method="GET"/>

<sec:intercept-urlpattern="/**/email*“access="hasAnyRole('"ROLE_EMAIL_UPDATE','ROLE_ADMIN")"
method="POST"/>

<sec:intercept-url pattern="/**/email/SoRs*" access="hasAnyRole('(ROLE_EMAIL_UPDATE','ROLE_ADMIN")"
method="POST"/>

<sec:intercept-url pattern="/**/activation/*" access="hasAnyRole("ROLE_GENERATE_KEY','"ROLE_ADMIN")"
method="DELETE"/>

<sec:intercept-url pattern="/addPerson.htm" access="hasRole('ROLE_ADD_PERSON")and
hasRole("fROLE_ADD_ SOR_ROLE") or hasRole("fROLE_ADMIN")"/>

</sec:filter-security-metadata-source=>
</property=>
</bean>

58

RUTGERS

Rutgers (specific)

Open Source (universal)

COMPLETED

Core API's - RATS Integration:

Email address Update

RIAS Data Feed

Personal Info App. Integration
SRDB Data Feed

PDB Initial Load - PDB —like views

Validation/Comparison

Reconciliation /Normalizati

Support User Management (Ul)
Add/Update User /role
Support User Management (Ul)
Core API - Join Split person

Generate Activation Key
Authorization tools

Disclosure setting

REST API to support NETID change

REST API to support email update

Certification Releases 1 & 2 Q3 Q4

RUTGERS

OpenRegistry views

PDB Back Sync

support ID Card # (RCN)

Managed Resources Connect
(LDAP Real time connector)

Support User Management (
Herd Assignments
Emergency Faculty/Staff

Rutgers (specific)

Self Service NetID Manageme
Activate NetID
Reset password/Secret Questi
NetlD Change

Support Email Notification for a

Provisioning-Downstream servi
- Resources (Camel Integration)
- Integration (real time update)

Open Source (universal)

PDB Sunset Planning

Open Registry High Availability Planning

Build Report Server

Batch - Bulk load Users

Complete user provisioni
services with RESTful Al

Support RESTful cal
regenerate ID Card

Production

Enhance Support User Management Tools

Continuing Ed integratio-

Auditing /Reporting (Basic)

Administrative/Configuration

Support User Management Check system tables (Health

Bulk load from file

Workflows (Basic):
Notify Approvers
Email Activation Keys

Basic Provisioning Engine (
time update AMQ Connectol

RUTGERS

Open Registry High Avall
Implementation
—~
O
=
o | PDB Sunset Implementation
(0]
o
L
o Provisioning-downstream expansion (Integrate with more downstream syst_
-
% Managed Resources
5‘ UNIX
nd .NET Connectors
Poweshell
AD
Continuing Ed integration support (Dependent on
= TR 0 I i
@© !
| Advance Workflows (BPEL/Bonita) Upstream-provisioning (SPML)
— .
@| -Notify Resolvers
>| -Attestation support
% Advance Auditing
~ Attestation
QJ .
8 Advance Re.portlng _ Group Management
=| Roles mapping to managed resources/services
(@]
0p)
c Rule Engine (JruleS/dmOl) - User Management Advanc
g_ features:
O Group Management,
! Org Structure ,
Open Connectors Integratio: Enhance Authorization
___ camaEECEEEEELELEEEEEELT AL B

Miscellaneous

* Rutgers Implementation:
— SpringFramework 3.0.5
— Hibernate.version 3.5.5
— Camel version 2.5.0
— ActiveMQ version 5.4.2
— Tomcast version 6.0.32
— Java SDK 1.6
— Database: Oracle 11g
— HW: Sun

62

Miscellaneous

e Source Code:

— https://source.jasig.org/
— https://source.jasig.org/openreqistry/trunk/

e Home
— https://wiki.jasig.org/display/OR/Home

e Design/High Level architecture
— https://wiki.jasig.org/display/OR/High+Level+Architecture

« Data Model

— https://wiki.jasig.org/download/attachments/17006634/riar db model v2 28 201
2.pdf?version=1&modificationDate=1330463253883

 Development
— https://wiki.jasig.org/display/JSG/openreqistry-dev

63

Miscellaneous

e User Manual
— https://wiki.jasig.org/display/ ORUM/Home

64

THANK YOU

Omer Almatary
IdM Project Manager, ESS
oalmatar@rutgers.edu
Muhammad Siddique
Application Architect/Developer
msidd@rutgers.edu

65

