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Abstract— In a software defined network (SDN), packet 
forwarding is controlled by software controllers. In an OpenFlow 
SDN, a controller can control the forwarding, rewriting, and 
dropping of packets based on their header attributes. The ability 
to handle packets in customizable ways in software has 
significant implications for both network users and operators. 
Via software, users can convey application specific expectations 
while operators can deliver application specific services to 
enhance user experiences. In this paper, we present the Steroid 
OpenFlow Services (SOS) paradigm for network services 
delivery. The paradigm enables operators to deliver network 
services without any setup requirements on user machines. SOS 
utilizes OpenFlow to redirect application specific traffic to 
application specific service agents; SOS also rewrites packet 
headers for a service to remain seamless to users. This paper 
presents an example SOS service for optimizing large volume 
TCP download across a large delay-bandwidth-product wide 
area network. SOS service agents on both ends of the connection 
seamlessly terminate a user TCP connection, launch a set of 
parallel TCP connections, and leverage multiple paths when 
available to maximize throughput. With the NSF GENI future 
Internet testbed, a prototype implementation achieved up to 320 
times throughput enhancement seamless to the end users. 
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I.  INTRODUCTION 
Amidst efforts to speed up innovations in future Internet 

solutions, Software Defined Networking (SDN) emerges as one 
attractive approach to realize novel Internet switching methods 
via software controllers. OpenFlow as one SDN approach 
defines a standardized messaging interface for a software 
controller to communicate with and control the data plane of an 
arbitrary set of Ethernet switches [1]. With OpenFlow, network 
operators can monitor and control the data plane of their packet 
switched network infrastructure in customizable layer fidelities 
via one or few centralized software controllers, referred to as 
OpenFlow controllers. Major industrial proponents including 
Google, Microsoft, Yahoo, Facebook, Verizon, Deutsch 
Telecom and others have recently formed the Open 
Networking Foundation to drive the standardization and 
realization of OpenFlow [2]. 

The advent of SDN breathes a paradigm shift in the service 
delivery architecture in Internet. In the past, the network 
infrastructure is application-agnostic and offers very few 
service level options. The majority of applications operate over 

a best-effort network service, while special applications with 
such constraints as very high bandwidth, real time latency, 
and/or security must utilize specialized client software for their 
data transport to take place over the public Internet or private 
fiber networks. For example, scientific projects like the Large 
Hadron Collider (LHC) generate petabytes of data each year. In 
order to efficiently move such large amounts of data across the 
network for researcher access today, special software and 
hardware infrastructure such as the Globus GridFTP [3] (client 
software and specialized gateways) has been needed. The need 
of specialized setup and training for its users, however, limits 
its utilization to only a very specialized user community.  

With SDN, such enhanced network services can be tailored 
for different applications seamless to the end user. This paper 
presents Steroid OpenFlow Service (SOS). By enabling 
network operators with the ability to flexibly and seamlessly 
redirect specific applications’ traffic to SOS service agents, 
these agents can flexibly apply a range of techniques such as 
using a better transport protocol, reserving resources on behalf 
of the user, and utilizing multiple paths. SOS provides network 
operators a tool to decouple applications’ protocol choices from 
the network’s data transport mechanism. It represents a major 
paradigm shift, allowing operators to deliver network services 
seamlessly as well as to evolve such services perpetually 
without interruption to users.  

SOS is realized across multiple participating sites, based on 
an OpenFlow controller controlling OpenFlow-enabled 
switches and service specific software agents at each site. SOS 
can operate among islands of OpenFlow networks embedded in 
non-OpenFlow IP networks, while it is beneficial to have 
OpenFlow-enabled switches in the core to leverage multipath 
and load balancing opportunities. SOS has been implemented 
over the NSF Global Environment for Network Innovations 
(GENI) testbed [4], demonstrating over an “around-the-
country” path up to 320 times TCP throughput enhancements 
over regular TCP without SOS.  

The rest of the paper is organized as follows. Section 2 
describes the OpenFlow network model, the SOS architecture, 
and its associated discovery mechanism. Section 3 describes 
the SOS setup on the NSF GENI testbed across Clemson, SC, 
Stanford, CA, Seattle, WA, and Cambridge, MA. Section 4 
discusses the implication of SOS for various emerging 
applications for the future Internet and a number of closely 
related works. The paper concludes in Section 5. 



II. NETWORK MODEL 

A. OpenFlow Network 
OpenFlow originated as a solution for researchers to 

experiment novel protocols over an existing Ethernet network 
[5], while over time it attracted industrial attention as a 
promising new way to operate future enterprise networks and 
the Internet [2]. To enable existing Ethernet switches to support 
OpenFlow with the least effort, OpenFlow defines a 
standardized and secure interface to access and control a 
switch’s flow table – a common component available on the 
majority of vendors’ existing switches. Over a secure 
messaging channel, an OpenFlow controller can send messages 
to Ethernet switches under its control to add or remove flow 
entries in the flow table. An OpenFlow flow entry can match a 
packet to an action based on layer 2, 3, and/or 4 fields in 
addition to the switch port number on which the packet arrives. 
The action can range from dropping the packet, outputting the 
packet on specified port(s), and modifying layer 2, 3, and/or 4 
header fields. 

When a packet comes to an OpenFlow switch, if its flow 
table has a flow entry matching the packet, the associated 
action is applied. Otherwise, the packet is sent over the secure 
channel to the controller, who then decides an action for the 
packet. The controller can also install a new flow entry on the 
switch to handle future occurrences of the same type of traffic. 

B. SOS Architecture 
Figure 1 shows a high level view of the SOS architecture 

and the six steps for incurring a SOS-based service. For 
illustration, we assume a file download application such as 
wget. The six steps are: 

1. User application initiation: Users initiate their 
applications as usual. In the case of wget, an HTTP 
request is sent towards the intended server. 

2. Redirection to controller: When the HTTP request 
arrives at the first OpenFlow-enabled switch, being 
the first packet of a new flow, it is forwarded to the 
SOS-enabled OpenFlow controller. 

3. Controller sets up switches and service agents: Based 
on the packet type, the controller decides to invoke a 
specific type of service agent to service this flow. This 
is based on the switch (alternatively referred to as a 
datapath in OpenFlow terminology) the packet comes 
from and its destination IP address. The controller 
identifies the service agents at both sites and: 1) 
informs the agents of the incoming flow, the end host 
to connect to, the number of sockets to use, and a 
universally unique identifier (UUID) for the 
connection 2) set up flow table entries for the flow on 
all OpenFlow-enabled switches along the end-to-end 
path by sending flow_mod messages to these switches. 
If multiple paths are available, the controller can set 
up flow entries along all paths simultaneously to 
utilize them at once if desired.  
 

Figure 1.  The SOS network architecture. 

agents: With Step 3, application traffic begins to be 
redirected to the service agent on the client site. The 
switch rewrites the packets’ layer 2 and 3 addresses 
and layer 4 ports in order for the service to be 
seamless to all parties.  

4. Application traffic sent between service agents: The 
service agents incur their own transport protocol of 
choice to carry the data across the wide area network. 
In this example, parallel TCP sockets are used. We 
have also implemented this service using UDT [6], 
while other transport methods like RDMA [7] would 
be applicable as well.  

5. Seamless delivery to destination host: The destination 
site agent delivers the received payload to the 
intended end host using the application’s original 
transport protocol. 

The entire process is transparent to both application end 
hosts due to the packet header rewrite performed by the 
OpenFlow switches at both ends of the connection. Careful 
observers would have noticed this being analogous to a man-in-
the-middle setup, only that the middle man is now a valid agent 
run by the network operator. Note that OpenFlow’s main 
contribution to SOS is seamless traffic redirect. The example 
above assumes application packets redirected at the OpenFlow-
enabled access switch; nevertheless, even at sites without 
physical OpenFlow switches, the network provider can 
manually add static routes to redirect traffic to a server running 
a software OpenFlow switch (such as the Open Vswitch, as 
elaborated in the following section) to implement SOS. 

C. SOS Service Discovery 
The presented work is supported in part by a National Science Foundation 

grant CNS-0944089For a site (a campus or enterprise network) to 
support SOS, the site would configure some or all of its 
OpenFlow-enabled switches to listen to the SOS controller.  
This controller is shared by multiple sites.  In practice and in 
GENI as of today, this is carried out via network virtualization.  
Each site will allocate a virtual slice of its switches using 
network virtualization software such as FlowVisor [8] and 
delegate the slice to the SOS controller. Thus, users wishing to 
invoke SOS services can be incrementally moved to the SOS-
enabled slice.  

In addition to the switch slicing configuration, the SOS  
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controller needs to explicitly know the service agents running 
on each site. Network operators run SOS agents on one or 
multiple hosts on site, and each agent advertises itself by 
sending special discovery packets to the network periodically. 
Note that each SOS agent can actually be serving multiple SOS 
controllers (potentially offering different types of services 
and/or different service providers). Since each network slice is 
controlled by one controller, the network operator may create 
multiple slices that are under different SOS controllers’ control. 
The same service agents can be shared by all the SOS slices, 
though, as long as the agent discovery packets are included in 
the slices’ flowspace definition (see FlowVisor [8]). 

As discovery packets arrive at an OpenFlow switch, the 
packets are forwarded to all listening SOS controllers. Each 
controller maintains a table of all agents’ type of service, IP 
address, port number, and current load. The information will be 
needed for the SOS controller to choose the best pair of agents 
for each incoming new application flow. 

D. SOS Controller 
Upon detecting a new application flow, the controller 

selects the agents, path(s), and packet handling actions for the 
service. Below describes the controller’s key functions: 

1. Agent Selection: When a packet is sent to the 
controller due to a missing flow entry (indicating the 
start of a new flow) the controller checks to see if the 
packet’s header matches a supported type of service. 
If so, the controller uses the datapath id of the switch 
the packet comes from to determine if there is a 
known SOS agent at that site and one near the 
destination site (based on the packet’s destination IP 
address). If both sites have SOS agents, the controller 
installs flows for the SOS service.  

2. Path Selection:  The paths used for SOS services are 
discovered and chosen by the controller. For all 
controlled OpenFlow switches, the controller sends 
LLDP packets out of each port containing the switch’s 
datapath id and the switch port number. When these 
packets are received by any connected OpenFlow 
switches, they are forwarded to the controller (via 
packet_in messages) for the controller to record the 
network topology. Thus, for each new flow, the 
controller selects one or multiple paths per its policies 
and installs flow entries to the switches on the path(s). 

3. Flow table entries generation: To forward traffic 
between end hosts and agents, the flow entries match 
layer 2, 3, and 4 headers (two entries per client TCP 
flow). Between agents, due to the large number of 
parallel TCP flows, special care is needed to avoid an 
exploding number of flow entries. Specifically, the 
controller uses an alternative MAC address generated 
for each path to rewrite the packets, so that the core 
switches only need two instead of hundreds of flow 
entries per path. 

4. Multipath support: When multiple end-to-end paths 
exist between two end hosts, they can all be utilized to 
achieve larger throughput. Different policies can be 

used by the controller for choosing the paths and 
allocating sockets to respective paths.  To achieve 
optimal performance, appropriate buffering for each 
socket is needed at the agents as well (see Section 
3.3).  

E. SOS Agent for Large TCP Fata Transport 
SOS agents implement application-specific services. They 

can be rolled out incrementally as they become available. In 
this paper, an agent is implemented for enhancing large TCP 
data transport performance. Below describes the agent 
implementation, addressing the following: 

1. User TCP seamless termination and restore: Each end 
agent binds on a series of ports. One port is for client 
to connect to and the other ports are used for parallel 
sockets for agent-to-agent data transfer.  

2. Parallel TCP sockets:  The agents communicate 
between each other with a series of TCP sockets. 
When the agent transmits the forwarded TCP data a 
sequence number is appended to the data to allow for 
reconstruction at the end agent.  Due to limited space 
details on socket polling, buffering, and handling 
multiple client connections are not included here. 

III. GENI TESTBED IMPLEMENTATION 

A. Experiment Topology and Setup 
To validate the correct operation and performance of SOS, 

the NSF GENI testbed provided a most suitable resource with a 
nation-wide OpenFlow network consisting of multiple campus 
networks and multiple core network paths provided by 
National Lambda Rail (NLR) and Internet2. Figure 2 illustrates 
the experiment topology, involving campus networks at 
Clemson, SC, Stanford, CA, and Cambridge, MA and transit 
switches at Seattle, WA, Denver, CO, and Chicago, IL. 

For the experiment, a HTTP request was sent from 
Clemson to Cambridge. The SOS controller identifies two 
paths, one short (59 ms ping RTT) and one long (164 ms ping 
RTT). Each path has a 1Gpbs connection from the site to the 
core and a 10Gbps connection within the core network. The 
experiment downloads a 1Gb file from Cambridge to Clemson 
repeatedly over five different configurations: the number of 
parallel TCP sockets were varied to study their impacts. 

Figure 2.  SOS experiment topology on GENI. 
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B. Performance Measurement 
Table 1 summarizes the measured throughputs. A number 

of interesting observations can be made: 
1. Long path vs. short path: With TCP alone, as 

expected, the long path achieves the lowest 
throughput. With SOS, both paths achieved similar 
throughput, much higher than TCP alone.  

2. Throughput efficiency: iperf UDP throughput was 
measured as a baseline for comparison. Over the 1 
Gbps paths, iperf UDP achieved 663Mbps on path 1 
and 657Mbps on path 2. As seen, SOS achieved 
nearly 99% of the UDP throughputs. Figure 3 also 
shows SOS throughput vs. the number of parallel TCP 
sockets used; it is  known that the number of TCP 
sockets used has an impact on achievable throughput 
in parallel TCP [9].  

3. Multipath: The results showed that SOS achieved the 
highest throughput using both paths simultaneously. It 
is interesting to note that the achievable multipath 
throughput depended sensitively on the blocking 
caused by out of order arrivals from the parallel TCP 
sockets, and the issue was successfully resolved by 
the agent with userspace buffering. The multipath 
results in Table 1 and Figure 3 did not exceed Path 1’s 
throughput much; as the two paths were not fully 
distinct and shared the same 1 Gbps bottleneck links 
at both ends. 

Table 1 also shows the different results obtained from 
PlanetLab and Protogeni clients, respectively, on the GENI 
network. PlanetLab nodes are based on Vservers virtualization 
architecture while Protogeni nodes are native Ubuntu Linux 
hosts. For some yet unidentified reason, downloads from the 
PlanetLab end host were not able to achieve the same end to 
end throughput as a Protogeni end host. Though, 
encouragingly, with SOS such differences were no longer an 
issue and both achieved beyond 600Mbps speeds. 

C. Lessons Learned 
One lesson learned during the development process was 

that our OpenFlow-enabled hardware switches had a number of 
limitations that greatly affected performance. These limitations 
were: 1) the switches were unable to modify layer 2, 3 and 4 
header fields of a packet at line rate and 2) installing a large 
number of flow entries causes the traffic to be processed at the 
switch’s slow path (software processing) and take  seconds to 
be moved to hardware forwarding. The rewrite issue was 
solved by adopting OpenVswitch (OVS) at each agent machine 
to perform rewrite before sending packets out to the hardware 
switches. The large number of flow entries installed was solved 
by using OVS to rewrite the source MAC address which gave 
the core switches a field to differentiate on to make use of 
multiple paths. Doing this greatly reduced the number of 
flow_mods required.  

Lastly, the importance of reading/writing strategy and use 
of socket polling proved to be extremely important. An early 
implementation of the agent used the SCTP transport protocol 
which is message based unlike TCP (stream based). This 

TABLE I.  ACHIEVED THROUGHPUT WITH DIFFERENT SCHEMES 

Topology TCP PL 
(Mbps) 

TCP PG 
(Mbps) 

iperf 
UDP  

(Mbps) 
SOS PL 
(Mbps) 

SOS PG 
(Mbps) 

Path 1 
(short) 8 200 663 620 622 

Path 2 
(long) 2 70 657 615 615 

Multi-
path    640 639 
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Figure 3.  SOS throughput vs. number of sockets. 

allowed the agent to read and write data in a round robin 
fashion allowing the order of data to be maintained correct. 
This approach was easy to implement though lead to 
performance loss since it required the agent to wait for the next 
file descriptor to be available to write/read before moving on. 
Later when TCP was adopted in place of SCTP, the reading 
and writing strategy was changed to using polling. The agent 
uses the epoll() function to be informed when any file 
descriptor becomes available for read/write. This avoided any 
busy socket from blocking the entire flow. 

IV. IMPLICATIONS ON FUTURE INTERNET SERVICE 
ARCHITECTURE 

A. Mobile Computing 
To date, supporting seamless Internet connection for mobile 

devices translates to significant handover overheads, complex 
mobile IP agent configurations on base stations, and inferior 
end-to-end performance. With SOS, agents can be developed 
and deployed in Internet to support and enhance seamless 
mobile connection performance leveraging knowledge of the 
mobile environment and cloud based resources. With SDN and 
SOS, mobile end users also have the opportunity to convey 
their mobility preference, projection, and history to proactively 
provision network forwarding services to achieve zero latency 
across link and network handovers. 



B. Content/Media Delivery 
Content/media delivery has already been an important 

mode of Internet usage for years. Plenty of solutions, such as 
cache proxies, content distribution networks, and quality of 
service provisioning techniques have been studied and 
deployed. Deployment of such services in the network, 
however, is predominantly a network provider decision.  There 
is not an existing platform for end users to customize their 
service levels on demand. With the SOS architecture, novel 
network services are envisioned to be openly deployed as new 
agents through a standardized procedure. This procedure 
allows new applications to be released in conjunction with their 
customized SOS agents that allow user configuration of 
specific performance requirements. In turn, the agents can 
optimize the network forwarding strategies accordingly over 
the SOS paradigm. 

C. Related Work 
The specific problem of optimizing wide area data 

transport has been a persistent endeavor by a large community. 
For example, the Globus GridFTP server and client tools have 
been leveraged by many for moving large data across the 
Internet as well as dedicated fiber networks. The Globus 
approach has a very similar architecture as SOS in that it 
decouples the user-to-gateway and gateway-to-gateway data 
transport and handles them separately. Like SOS, Globus as an 
architecture can also accommodate different transport 
protocols in the core such as UDT or RDMA. Unlike SOS, 
Globus users access the Globus network explicitly using 
special client software. 

V. CONCLUSION AND FUTURE WORK 
In this paper, we have presented SOS as a paradigm for 

seamless delivery of network services in OpenFlow-enabled 
networks.  The concept was demonstrated with a wide area 
TCP data transport optimization service, which was 
implemented for experimentation on the NSF GENI network. 
The paper serves three purposes: 

• Demonstration of prototyping and experimentation on 
the GENI OpenFlow network; 

• Demonstration of a paradigm for university campuses 
to leverage OpenFlow to serve the wider science 
research and education purposes; 

• Demonstration of a paradigm that is extensible for fast 
and seamless deployment of novel services. 

The SOS paradigm shares similar concepts as various other 
legacy and emerging data transport services, while we believe 
the added autonomy and programmability provided by a SDN 
network would allow it to serve as a unified platform for a 
wider range of services and applications. 
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