
Steroid OpenFlow Service: Seamless Network
Service Delivery in Software Defined Networks

Aaron Rosen and Kuang-Ching Wang
Holcombe Department of Electrical and Computer Engineering

Clemson University
Clemson, SC

{arosen, kwang}@clemson.edu

Abstract— In a software defined network (SDN), packet
forwarding is controlled by software controllers. In an OpenFlow
SDN, a controller can control the forwarding, rewriting, and
dropping of packets based on their header attributes. The ability
to handle packets in customizable ways in software has
significant implications for both network users and operators.
Via software, users can convey application specific expectations
while operators can deliver application specific services to
enhance user experiences. In this paper, we present the Steroid
OpenFlow Services (SOS) paradigm for network services
delivery. The paradigm enables operators to deliver network
services without any setup requirements on user machines. SOS
utilizes OpenFlow to redirect application specific traffic to
application specific service agents; SOS also rewrites packet
headers for a service to remain seamless to users. This paper
presents an example SOS service for optimizing large volume
TCP download across a large delay-bandwidth-product wide
area network. SOS service agents on both ends of the connection
seamlessly terminate a user TCP connection, launch a set of
parallel TCP connections, and leverage multiple paths when
available to maximize throughput. With the NSF GENI future
Internet testbed, a prototype implementation achieved up to 320
times throughput enhancement seamless to the end users.

Keywords- Software Defined Network, OpenFlow, Service

I. INTRODUCTION
Amidst efforts to speed up innovations in future Internet

solutions, Software Defined Networking (SDN) emerges as one
attractive approach to realize novel Internet switching methods
via software controllers. OpenFlow as one SDN approach
defines a standardized messaging interface for a software
controller to communicate with and control the data plane of an
arbitrary set of Ethernet switches [1]. With OpenFlow, network
operators can monitor and control the data plane of their packet
switched network infrastructure in customizable layer fidelities
via one or few centralized software controllers, referred to as
OpenFlow controllers. Major industrial proponents including
Google, Microsoft, Yahoo, Facebook, Verizon, Deutsch
Telecom and others have recently formed the Open
Networking Foundation to drive the standardization and
realization of OpenFlow [2].

The advent of SDN breathes a paradigm shift in the service
delivery architecture in Internet. In the past, the network
infrastructure is application-agnostic and offers very few
service level options. The majority of applications operate over

a best-effort network service, while special applications with
such constraints as very high bandwidth, real time latency,
and/or security must utilize specialized client software for their
data transport to take place over the public Internet or private
fiber networks. For example, scientific projects like the Large
Hadron Collider (LHC) generate petabytes of data each year. In
order to efficiently move such large amounts of data across the
network for researcher access today, special software and
hardware infrastructure such as the Globus GridFTP [3] (client
software and specialized gateways) has been needed. The need
of specialized setup and training for its users, however, limits
its utilization to only a very specialized user community.

With SDN, such enhanced network services can be tailored
for different applications seamless to the end user. This paper
presents Steroid OpenFlow Service (SOS). By enabling
network operators with the ability to flexibly and seamlessly
redirect specific applications’ traffic to SOS service agents,
these agents can flexibly apply a range of techniques such as
using a better transport protocol, reserving resources on behalf
of the user, and utilizing multiple paths. SOS provides network
operators a tool to decouple applications’ protocol choices from
the network’s data transport mechanism. It represents a major
paradigm shift, allowing operators to deliver network services
seamlessly as well as to evolve such services perpetually
without interruption to users.

SOS is realized across multiple participating sites, based on
an OpenFlow controller controlling OpenFlow-enabled
switches and service specific software agents at each site. SOS
can operate among islands of OpenFlow networks embedded in
non-OpenFlow IP networks, while it is beneficial to have
OpenFlow-enabled switches in the core to leverage multipath
and load balancing opportunities. SOS has been implemented
over the NSF Global Environment for Network Innovations
(GENI) testbed [4], demonstrating over an “around-the-
country” path up to 320 times TCP throughput enhancements
over regular TCP without SOS.

The rest of the paper is organized as follows. Section 2
describes the OpenFlow network model, the SOS architecture,
and its associated discovery mechanism. Section 3 describes
the SOS setup on the NSF GENI testbed across Clemson, SC,
Stanford, CA, Seattle, WA, and Cambridge, MA. Section 4
discusses the implication of SOS for various emerging
applications for the future Internet and a number of closely
related works. The paper concludes in Section 5.

II. NETWORK MODEL

A. OpenFlow Network
OpenFlow originated as a solution for researchers to

experiment novel protocols over an existing Ethernet network
[5], while over time it attracted industrial attention as a
promising new way to operate future enterprise networks and
the Internet [2]. To enable existing Ethernet switches to support
OpenFlow with the least effort, OpenFlow defines a
standardized and secure interface to access and control a
switch’s flow table – a common component available on the
majority of vendors’ existing switches. Over a secure
messaging channel, an OpenFlow controller can send messages
to Ethernet switches under its control to add or remove flow
entries in the flow table. An OpenFlow flow entry can match a
packet to an action based on layer 2, 3, and/or 4 fields in
addition to the switch port number on which the packet arrives.
The action can range from dropping the packet, outputting the
packet on specified port(s), and modifying layer 2, 3, and/or 4
header fields.

When a packet comes to an OpenFlow switch, if its flow
table has a flow entry matching the packet, the associated
action is applied. Otherwise, the packet is sent over the secure
channel to the controller, who then decides an action for the
packet. The controller can also install a new flow entry on the
switch to handle future occurrences of the same type of traffic.

B. SOS Architecture
Figure 1 shows a high level view of the SOS architecture

and the six steps for incurring a SOS-based service. For
illustration, we assume a file download application such as
wget. The six steps are:

1. User application initiation: Users initiate their
applications as usual. In the case of wget, an HTTP
request is sent towards the intended server.

2. Redirection to controller: When the HTTP request
arrives at the first OpenFlow-enabled switch, being
the first packet of a new flow, it is forwarded to the
SOS-enabled OpenFlow controller.

3. Controller sets up switches and service agents: Based
on the packet type, the controller decides to invoke a
specific type of service agent to service this flow. This
is based on the switch (alternatively referred to as a
datapath in OpenFlow terminology) the packet comes
from and its destination IP address. The controller
identifies the service agents at both sites and: 1)
informs the agents of the incoming flow, the end host
to connect to, the number of sockets to use, and a
universally unique identifier (UUID) for the
connection 2) set up flow table entries for the flow on
all OpenFlow-enabled switches along the end-to-end
path by sending flow_mod messages to these switches.
If multiple paths are available, the controller can set
up flow entries along all paths simultaneously to
utilize them at once if desired.

Figure 1. The SOS network architecture.

agents: With Step 3, application traffic begins to be
redirected to the service agent on the client site. The
switch rewrites the packets’ layer 2 and 3 addresses
and layer 4 ports in order for the service to be
seamless to all parties.

4. Application traffic sent between service agents: The
service agents incur their own transport protocol of
choice to carry the data across the wide area network.
In this example, parallel TCP sockets are used. We
have also implemented this service using UDT [6],
while other transport methods like RDMA [7] would
be applicable as well.

5. Seamless delivery to destination host: The destination
site agent delivers the received payload to the
intended end host using the application’s original
transport protocol.

The entire process is transparent to both application end
hosts due to the packet header rewrite performed by the
OpenFlow switches at both ends of the connection. Careful
observers would have noticed this being analogous to a man-in-
the-middle setup, only that the middle man is now a valid agent
run by the network operator. Note that OpenFlow’s main
contribution to SOS is seamless traffic redirect. The example
above assumes application packets redirected at the OpenFlow-
enabled access switch; nevertheless, even at sites without
physical OpenFlow switches, the network provider can
manually add static routes to redirect traffic to a server running
a software OpenFlow switch (such as the Open Vswitch, as
elaborated in the following section) to implement SOS.

C. SOS Service Discovery
The presented work is supported in part by a National Science Foundation

grant CNS-0944089For a site (a campus or enterprise network) to
support SOS, the site would configure some or all of its
OpenFlow-enabled switches to listen to the SOS controller.
This controller is shared by multiple sites. In practice and in
GENI as of today, this is carried out via network virtualization.
Each site will allocate a virtual slice of its switches using
network virtualization software such as FlowVisor [8] and
delegate the slice to the SOS controller. Thus, users wishing to
invoke SOS services can be incrementally moved to the SOS-
enabled slice.

In addition to the switch slicing configuration, the SOS

The presented work is supported in part by a National Science Foundation
grant CNS-094408.

controller needs to explicitly know the service agents running
on each site. Network operators run SOS agents on one or
multiple hosts on site, and each agent advertises itself by
sending special discovery packets to the network periodically.
Note that each SOS agent can actually be serving multiple SOS
controllers (potentially offering different types of services
and/or different service providers). Since each network slice is
controlled by one controller, the network operator may create
multiple slices that are under different SOS controllers’ control.
The same service agents can be shared by all the SOS slices,
though, as long as the agent discovery packets are included in
the slices’ flowspace definition (see FlowVisor [8]).

As discovery packets arrive at an OpenFlow switch, the
packets are forwarded to all listening SOS controllers. Each
controller maintains a table of all agents’ type of service, IP
address, port number, and current load. The information will be
needed for the SOS controller to choose the best pair of agents
for each incoming new application flow.

D. SOS Controller
Upon detecting a new application flow, the controller

selects the agents, path(s), and packet handling actions for the
service. Below describes the controller’s key functions:

1. Agent Selection: When a packet is sent to the
controller due to a missing flow entry (indicating the
start of a new flow) the controller checks to see if the
packet’s header matches a supported type of service.
If so, the controller uses the datapath id of the switch
the packet comes from to determine if there is a
known SOS agent at that site and one near the
destination site (based on the packet’s destination IP
address). If both sites have SOS agents, the controller
installs flows for the SOS service.

2. Path Selection: The paths used for SOS services are
discovered and chosen by the controller. For all
controlled OpenFlow switches, the controller sends
LLDP packets out of each port containing the switch’s
datapath id and the switch port number. When these
packets are received by any connected OpenFlow
switches, they are forwarded to the controller (via
packet_in messages) for the controller to record the
network topology. Thus, for each new flow, the
controller selects one or multiple paths per its policies
and installs flow entries to the switches on the path(s).

3. Flow table entries generation: To forward traffic
between end hosts and agents, the flow entries match
layer 2, 3, and 4 headers (two entries per client TCP
flow). Between agents, due to the large number of
parallel TCP flows, special care is needed to avoid an
exploding number of flow entries. Specifically, the
controller uses an alternative MAC address generated
for each path to rewrite the packets, so that the core
switches only need two instead of hundreds of flow
entries per path.

4. Multipath support: When multiple end-to-end paths
exist between two end hosts, they can all be utilized to
achieve larger throughput. Different policies can be

used by the controller for choosing the paths and
allocating sockets to respective paths. To achieve
optimal performance, appropriate buffering for each
socket is needed at the agents as well (see Section
3.3).

E. SOS Agent for Large TCP Fata Transport
SOS agents implement application-specific services. They

can be rolled out incrementally as they become available. In
this paper, an agent is implemented for enhancing large TCP
data transport performance. Below describes the agent
implementation, addressing the following:

1. User TCP seamless termination and restore: Each end
agent binds on a series of ports. One port is for client
to connect to and the other ports are used for parallel
sockets for agent-to-agent data transfer.

2. Parallel TCP sockets: The agents communicate
between each other with a series of TCP sockets.
When the agent transmits the forwarded TCP data a
sequence number is appended to the data to allow for
reconstruction at the end agent. Due to limited space
details on socket polling, buffering, and handling
multiple client connections are not included here.

III. GENI TESTBED IMPLEMENTATION

A. Experiment Topology and Setup
To validate the correct operation and performance of SOS,

the NSF GENI testbed provided a most suitable resource with a
nation-wide OpenFlow network consisting of multiple campus
networks and multiple core network paths provided by
National Lambda Rail (NLR) and Internet2. Figure 2 illustrates
the experiment topology, involving campus networks at
Clemson, SC, Stanford, CA, and Cambridge, MA and transit
switches at Seattle, WA, Denver, CO, and Chicago, IL.

For the experiment, a HTTP request was sent from
Clemson to Cambridge. The SOS controller identifies two
paths, one short (59 ms ping RTT) and one long (164 ms ping
RTT). Each path has a 1Gpbs connection from the site to the
core and a 10Gbps connection within the core network. The
experiment downloads a 1Gb file from Cambridge to Clemson
repeatedly over five different configurations: the number of
parallel TCP sockets were varied to study their impacts.

Figure 2. SOS experiment topology on GENI.

Identify applicable sponsor/s here. (sponsors)Identify applicable sponsor/s here. (sponsors)

B. Performance Measurement
Table 1 summarizes the measured throughputs. A number

of interesting observations can be made:
1. Long path vs. short path: With TCP alone, as

expected, the long path achieves the lowest
throughput. With SOS, both paths achieved similar
throughput, much higher than TCP alone.

2. Throughput efficiency: iperf UDP throughput was
measured as a baseline for comparison. Over the 1
Gbps paths, iperf UDP achieved 663Mbps on path 1
and 657Mbps on path 2. As seen, SOS achieved
nearly 99% of the UDP throughputs. Figure 3 also
shows SOS throughput vs. the number of parallel TCP
sockets used; it is known that the number of TCP
sockets used has an impact on achievable throughput
in parallel TCP [9].

3. Multipath: The results showed that SOS achieved the
highest throughput using both paths simultaneously. It
is interesting to note that the achievable multipath
throughput depended sensitively on the blocking
caused by out of order arrivals from the parallel TCP
sockets, and the issue was successfully resolved by
the agent with userspace buffering. The multipath
results in Table 1 and Figure 3 did not exceed Path 1’s
throughput much; as the two paths were not fully
distinct and shared the same 1 Gbps bottleneck links
at both ends.

Table 1 also shows the different results obtained from
PlanetLab and Protogeni clients, respectively, on the GENI
network. PlanetLab nodes are based on Vservers virtualization
architecture while Protogeni nodes are native Ubuntu Linux
hosts. For some yet unidentified reason, downloads from the
PlanetLab end host were not able to achieve the same end to
end throughput as a Protogeni end host. Though,
encouragingly, with SOS such differences were no longer an
issue and both achieved beyond 600Mbps speeds.

C. Lessons Learned
One lesson learned during the development process was

that our OpenFlow-enabled hardware switches had a number of
limitations that greatly affected performance. These limitations
were: 1) the switches were unable to modify layer 2, 3 and 4
header fields of a packet at line rate and 2) installing a large
number of flow entries causes the traffic to be processed at the
switch’s slow path (software processing) and take seconds to
be moved to hardware forwarding. The rewrite issue was
solved by adopting OpenVswitch (OVS) at each agent machine
to perform rewrite before sending packets out to the hardware
switches. The large number of flow entries installed was solved
by using OVS to rewrite the source MAC address which gave
the core switches a field to differentiate on to make use of
multiple paths. Doing this greatly reduced the number of
flow_mods required.

Lastly, the importance of reading/writing strategy and use
of socket polling proved to be extremely important. An early
implementation of the agent used the SCTP transport protocol
which is message based unlike TCP (stream based). This

TABLE I. ACHIEVED THROUGHPUT WITH DIFFERENT SCHEMES

Topology TCP PL
(Mbps)

TCP PG
(Mbps)

iperf
UDP

(Mbps)
SOS PL
(Mbps)

SOS PG
(Mbps)

Path 1
(short) 8 200 663 620 622

Path 2
(long) 2 70 657 615 615

Multi-
path 640 639

0

100

200

300

400

500

600

700

1 3 5 7 9 11 13 15
Th

ro
ug

hp
ut

 (M
bp

s)

Number of Sockets

Path1
Path2
Multipath

Figure 3. SOS throughput vs. number of sockets.

allowed the agent to read and write data in a round robin
fashion allowing the order of data to be maintained correct.
This approach was easy to implement though lead to
performance loss since it required the agent to wait for the next
file descriptor to be available to write/read before moving on.
Later when TCP was adopted in place of SCTP, the reading
and writing strategy was changed to using polling. The agent
uses the epoll() function to be informed when any file
descriptor becomes available for read/write. This avoided any
busy socket from blocking the entire flow.

IV. IMPLICATIONS ON FUTURE INTERNET SERVICE
ARCHITECTURE

A. Mobile Computing
To date, supporting seamless Internet connection for mobile

devices translates to significant handover overheads, complex
mobile IP agent configurations on base stations, and inferior
end-to-end performance. With SOS, agents can be developed
and deployed in Internet to support and enhance seamless
mobile connection performance leveraging knowledge of the
mobile environment and cloud based resources. With SDN and
SOS, mobile end users also have the opportunity to convey
their mobility preference, projection, and history to proactively
provision network forwarding services to achieve zero latency
across link and network handovers.

B. Content/Media Delivery
Content/media delivery has already been an important

mode of Internet usage for years. Plenty of solutions, such as
cache proxies, content distribution networks, and quality of
service provisioning techniques have been studied and
deployed. Deployment of such services in the network,
however, is predominantly a network provider decision. There
is not an existing platform for end users to customize their
service levels on demand. With the SOS architecture, novel
network services are envisioned to be openly deployed as new
agents through a standardized procedure. This procedure
allows new applications to be released in conjunction with their
customized SOS agents that allow user configuration of
specific performance requirements. In turn, the agents can
optimize the network forwarding strategies accordingly over
the SOS paradigm.

C. Related Work
The specific problem of optimizing wide area data

transport has been a persistent endeavor by a large community.
For example, the Globus GridFTP server and client tools have
been leveraged by many for moving large data across the
Internet as well as dedicated fiber networks. The Globus
approach has a very similar architecture as SOS in that it
decouples the user-to-gateway and gateway-to-gateway data
transport and handles them separately. Like SOS, Globus as an
architecture can also accommodate different transport
protocols in the core such as UDT or RDMA. Unlike SOS,
Globus users access the Globus network explicitly using
special client software.

V. CONCLUSION AND FUTURE WORK
In this paper, we have presented SOS as a paradigm for

seamless delivery of network services in OpenFlow-enabled
networks. The concept was demonstrated with a wide area
TCP data transport optimization service, which was
implemented for experimentation on the NSF GENI network.
The paper serves three purposes:

• Demonstration of prototyping and experimentation on
the GENI OpenFlow network;

• Demonstration of a paradigm for university campuses
to leverage OpenFlow to serve the wider science
research and education purposes;

• Demonstration of a paradigm that is extensible for fast
and seamless deployment of novel services.

The SOS paradigm shares similar concepts as various other
legacy and emerging data transport services, while we believe
the added autonomy and programmability provided by a SDN
network would allow it to serve as a unified platform for a
wider range of services and applications.

ACKNOWLEDGMENT
The authors would like to express thanks to the technical

support provided by the Clemson Computing and Information
Technology (CCIT), the GENI campuses and backbone
networks, and the GENI Project Office at BBN Technologies.

REFERENCES
[1] Stanford Clean Slate Program, http://www.openflow.org/, accessed in

Nov. 2011.
[2] Open Networking Foundation, https://www.opennetworking.org/,

accessed in Nov. 2011.
[3] GENI: Exploring Networks of the Future, http://www.geni.net/, accessed

in Nov. 2011.
[4] Globus GridFTP, http://www.globus.org/toolkit/data/gridftp/, accessed

in Nov. 2011.
[5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.

Rexford, S. Shenker, and J.Turner. OpenFlow: enabling innovation in
campus networks. ACM SIGCOMM Computer Communication Review,
38(2): 69-74, April 2008.

[6] UDT: UDP based Data Transfer Protocol, http://udt.sourceforge.net/,
accessed in Nov. 2011.

[7] E. Kissel, and M. Swany, “Session layer burst switching for high
performance data movement,” in Proceedings of PFLDNet, Lancaster,
PA, pp. 1-6, 2010.

[8] FlowVisor, http://flowvisor.org. Last accessed in Nov. 2011.
[9] T. J. Hacker, B. D. Noble, and B. D. Athey, “Improving throughput and

maintaining fairness using parallel TCP,” in Proceedings of INFOCOM,
pp. 1-10, 2004.

[10] Open Networking Summit, http://opennetsummit.org/, accessed in Nov.
2011.

