Challenges to adopting SOA within Higher-Ed (and elsewhere)

Although there has been much hype and publicity regarding Service Oriented Architecture (SOA) and at times it seems like everybody says they are doing it, it’s worthwhile to occasionally revisit why we wish to pursue this strategy. It’s also important to understand some of the challenges that our organizations face while pursuing this strategy.
By understanding the goals and the challenges, hopefully we can help one another succeed.

What do we mean by SOA?

Architecture –

Architecture and technology are two different things. The people who design complex things are not the same people that build those things. In our context, architects are concerned with the definition and promotion of enterprise standards. Another way of saying this is that we build systems for today but we architect for tomorrow.
 Our architects are not normally focused on a particular line of business (LOB). Instead the architects are focused on the enterprise in its entirety.
The architects and architecture must deal with a broader range of issues than those impacting a single line of business. Often these include balancing competitive business pressures, organizational dynamics, enterprise licensing agreements, regulatory impacts, and optimizing costs for the enterprise instead of performing a local cost optimization. Additionally our architects must have some understanding of the probable future demands of both the users and the organization. To succeed the architecture will have to meet or accommodate these future demands.
Oriented –

Not every functional aspect within our organization needs to be exposed as a service. It is more desirable to identify the key integration points that are needed and expose those as a service. SOA is not the goal. It is simply a design approach that we believe will help us reach our goals. An organization that intends to adopt SOA should be able to clearly articulate the goals that it desires to achieve. The organization should also take the time to understand the relative value of these goals and how they will be prioritized against each other.
Service –

The ultimate goal of focusing on services is the same as many other past trends within IT organizations, the holy grail of reusable code, modularity, and flexibility.
According the Burton Group in a typical business application less than 50% of the coding effort is spent on implementing the core business capability. The rest of the effort is spent on orthogonal functionality such as transaction management, data persistence, session management, auditing capabilities, and of course, security.
A service approach champions the idea that reusability can be delivered by providing a set of services to a variety of applications using a consistent interface. While SOA focuses on building reusable services, one of visible and desirable side effects is that various presentation technologies can compose and expose the services in a variety ways, depending on the changing context of their use and the changing needs of the customers.
At the same time SOA offers us the chance to create highly modular systems where each service definition becomes a distinct module.

Finally, reusable, modular components suggest that we should end up with a flexible environment that allows us to replace small pieces of our systems over time instead of subjecting the organization to large scale rip-and-replace effort every few years, as has been the case with so many ERP deployments. This model also promises that we can introduce new, unforeseen, functionality more easily than in the past.

Reaching a common understanding of what we mean by Service in the context of SOA is perhaps one of the most contentious issues. Just as the term architecture is frequently misused, or over used inappropriately, so is the term service. Different stakeholders within an organization will have different biases in how they approach and model service definitions. This is also true of organizations adopting SOA.

Over the past several years different patterns have emerged that describe ways that functionality can be decomposed into a set of complimentary services. The Burton Group labels the two foremost approaches as “Infrastructure Services Model” (ISM) and “Business Process Management” (BPM).
ISM adherents tend to decompose services into functional technologies. The focus of this decomposition is agility from the technical perspective. Examples of this partitioning include authentication, authorization, auditing, session management, data persistence, and transactions.
BPM decomposes or organizes services along business functionality. By focusing on the business functionality, it may be easier for an organization to determine what services need to be implemented. This also serves to decouple the service model from the underlying infrastructure, which is often churning as new technologies are adopted and older ones phased out.
What are some of the concepts that we must remain vigilant about when dealing with SOA?
SOA is not equivalent to WS-*, or REST, or any other technologies or products
SOA is not a technology; it is a set of design principles. SOA should not be conflated with web services framework (WSF or ws-*). WSF is the most popular technology in use today to deliver SOA designs, however it is important to realize that technologies are fleeting.
It is important to maintain a clean separation of the business logic from the technologies used to expose or deliver the business logic. Doing so allows an organization to more easily adopt new technologies as they become available.

Neither should SOA be conflated with an enterprise service bus (ESB
). Given the technologies that are popular for implementing SOA deployments today, and ESB is a useful component. However, it is not an essential component.

ESBs focus on application integration, not service integration. Hence, too much reliance on ESBs may in fact be counterproductive to reaping the benefits of the SOA approach in the long run. Furthermore with an ESB’s focus on application integration there is a high probability that large dynamic organizations will end up using more than one ESB. The design of an organization’s SOA should not assume a single ESB.
SOA is all about design principals

SOA is not about technology. It is a set of design principles and best practices. The principles will persist long after the current assortment of products fade away. The important aspects are the decomposition of the services and the maintenance of the clean separation of concerns. Successful service-oriented systems must be founded upon architectural principles that will outlast technological change.
The successful architect of service-oriented systems will be “the person who can look at the jewel and hit it just the right way so it falls into the right number of pieces. It is that ability to decompose in just the right way.”

What are some of the impediments to adopting SOA?
Most organizations are structured so that development groups are focused on short term deliverables. Few projects are budgeted to include the additional time and development effort required to create a reusable component that can be used by a variety of projects over a significant period of time. This creates a tension between the development teams and those responsible for the long term architecture.
Too often the people responsible for implementing a project are driven to deliver the solution as fast as possible. The teams are not provided with any incentive to think in terms of what is best for the entire organization. Instead a local optimization is done, even if the net result is less efficient in the larger context.

Higher-ed and other organizations often face a challenge because of conflicting business and technical strategies. For example you may have a technical strategy of providing common infrastructure services that will be used by most business units. However, if the various organizational units function independently it is very difficult to come up with a funding model that pays for the implementation and deployment of common, reusable, services.
Another major issue centers on data. There needs to be a shared agreement regarding the data stewardship across the various organizational units. Are there defined systems of record for different sets of data? Who gets to determine the authorization requirements for access to discrete data? Another obstacle is the lack of semantic clarity; as an example how many versions of “student” and “faculty” exist across your institution?
Each of these issues suggest that a well functioning, well understood, IT governance system within an organization is essential to the creation of a successful service oriented architecture.

SOA adoption at MIT
SOA is not a quick fix.
MIT’s IT organization started adopting a service model long before the SOA term was coined. One of the earliest areas where we talked about software as a service was around authentication. Although Kerberos was developed as part of Project Athena during the late 1980’s we really started talking about it as a service in the early to mid 1990s.
In 1991 we had the MIT Version Service which was used to control the usage of distributed applications and retire obsolete versions of applications.
By 1994 the IT group had realized that in order to develop a service based architecture we had to get a better handle on our institutional data. Data has a much longer useful lifetime than the technology used to deliver the data at any given point in time. The data services group was formed and the initial MIT Data Warehouse was available in 1996.
By 1996 and 1997 MIT had started to embark on creating the MIT Roles database with a goal of using this as an authorization service. Although the implementation of APIs to access this database and a SOAP based web service interface came much later, by 1997 the Roles database was architected as a common infrastructure service.

By 1997 MIT had also designed MIT ID service which remains a core piece of our identity management strategy. From very early on this was not only designed as a service, but was implemented with a library that could be embedded into applications so that it could be called as a service over the network. More recently a SOAP based web service interface has also become available and that is being used by line of business applications, such as our new undergraduate admissions system.

Notice that each of these service definitions fit into what the Burton Group calls the Infrastructure Services Model (ISM). The services tend to have a technology focus, even those that are business process enablers such as the MIT ID Service.
In 2001 the Open Knowledge Initiative (OKI) was launched at MIT. OKI is very visibly focused on a service oriented architecture. It defines some broad categories of services that fit into both the ISM model and also the Business Process Management (BPM) model; although to a certain extent it is a domain specific model focusing on the needs of Education. The OKI Consortium will continue to evolve this model
The OKI service categories include: Agent, Assessment, Authentication, Authorization, Course Management, Dictionary, Filing, Grading, Hierarchy, ID, Logging, Repository, Scheduling, Shared, SQL, User Messaging, and Workflow.

Within MIT we continue to expand our service definitions and expand the technologies used to access the systems as services. Most recently this has included the creation of use of SOAP and REST based web services to access MIT Roles, MIT ID, and to provide geo-code information to our new undergraduate admissions system.

MIT has encountered many of the common pitfalls as we have pursued this path over the years. Although we have made much progress in our IT governance model we still face challenges in finding the time and funding necessary to develop reusable services. It’s too easy to end up developing something that looks like a service in one respect, but turns out to be a one-off project only suitable to meet the needs of short term goal.
We do not yet have a uniform understanding of the term Service at all levels or across all units. A visible artifact of this can be seen in a portion of our Enterprise Architecture Guide (EAG) produced by our Information Technology Architecture Group (ITAG) in conjunction with Sapient Technologies which was done in 2004. The services matrix document within the EAG attempts to define four different service definitions and two distinct ways of categorizing services.

One of our ongoing challenges is to ensure that the organization doesn’t loose site of the value of the architecture and end up chasing the technology of the moment.

Another important recurring challenge is how we engage with the rest of the organization to adopt this model and evolve their systems.

We’re also finding that we have to do a better job of explaining the inter-relationship of some of our services and how to best use them. A very visible aspect of this problem today is in the area of authorization. We have people using MIT Roles, others using list management to create access control lists, and still others starting to use attributes available from the directory service.

Miscellaneous thoughts:

Are the Infrastructure Services Model (ISM) and Business Process Management (BPM) actually maturity models for organizations adopting SOA? Or are these simply convenient categorizations of the moment? If these are not the start of a maturity model for SOA adoption, is there some other maturity model that we examine to help guide us?
Internet 2’s Middleware effort has produced Shibboleth, Cygnet, and Grouper. As organizations are adopting all three is there developer confusion about how to best use these for authorization or are different project teams creating different authorization models within their enterprise?

As the Agile Development process becomes increasingly popular within our development teams, how do we coordinate our architectural goals with the immediate deliverables? And how do we properly create incentives for development teams and their projects to be well aligned with our architectural goals?

� Anne Thomas Mannes, Richard Monson-Haefel, Joe Niski, Lyn Robison, Chris Howard, “Vantage Point 2007-2008: Build for Today, Architect for Tomorrow”, Burton Group, March 2007

� Mark Richard, “”The Role of the Enterprise Service Bus”, 68 minute video available at � HYPERLINK "http://www.infoq.com/presentations/Enterprise-Service-Bus" �http://www.infoq.com/presentations/Enterprise-Service-Bus�

� Harry Lilleniit, Nortel

� MIT EAG, Service Matrix Document can be found at � HYPERLINK "http://mit.edu/itag/eag/DServicesMatrix.pdf" ��http://mit.edu/itag/eag/DServicesMatrix.pdf�

� Recommended reading, Rebecca J. Parson, “Enterprise Architects Join The Team”, http://www.martinfowler.com/ieeeSoftware/enterpriseArchitects.pdf

