q\\\‘ Stony Brook University HE*=LHE

Principled and Practical Software Shielding against
Advanced Exploits

Michalis Polychronakis
Stony Brook University

Cybersecurity TTP Acceleration Workshop - 17 April 2018

Motivation

Software vulnerability exploitation

Among the leading causes of system compromise
and malware infection

We have to live with C/C++

Performance, compatibility, developer familiarity,
vast existing code base, ...

Many memory-safe programming languages exist, but full
transition would require an immense rewriting effort

Unlikely to happen for core systems code, resource-
constrained loT devices, ...

Defending against Vulnerability Exploitation

Finding and killing bugs
Bug bounties, sanitizers, fuzzing, symbolic exec, ...
Who will find the next 0-day?

Retrofit memory safety to C/C++

Eradicate the root cause of the problem: memory errors

Performance and compatibility challenges, but promising
steps are being made

Exploit mitigations
Assuming a vulnerability exists, “raise the bar” for exploitation
DEP, GS, SafeSEH, SEHOP, ASLR, CFI, ...

Exploit Mitigations Do Raise the Bar...

Pwn20wn 2007

“A New York-based security
researcher [Dino Dai Zovi]
spent less than 12 hours to
identify and exploit a zero-day
vulnerability in Apple's Safari
browser”

Exploit Mitigations Do Raise the Bar...

Pwn20wn 2007

“A New York-based security
researcher [Dino Dai Zovi]
spent less than 12 hours to
identify and exploit a zero-day
vulnerability in Apple's Safari
browser”

Pwn20wn a decade later

“This year saw several teams
sponsored by their employers
participating”

...but Attackers Can Often Knock the Bar Off

Code Injection

...but Attackers Can Often Knock the Bar Off

~

WAX

Code Injection

...but Attackers Can Often Knock the Bar Off

~

WAX

Code Injection

Code Reuse/ROP

...but Attackers Can Often Knock the Bar Off

Code Injection

WAX

\/

Code Reuse/ROP

ASLR

...but Attackers Can Often Knock the Bar Off

Code Injection
WAX
Code Reuse/ROP

ASLR

\/\/

Disclosure-aided ROP

...but Attackers Can Often Knock the Bar Off

Code Injection
WAX
Code Reuse/ROP
ASLR

Disclosure-aided ROP

/N\N/\/

Code Randomization

..but Attackers Can Often Knock the Bar Off

Code Injection
WAX
Code Reuse/ROP
ASLR
Disclosure-aided ROP

Code Randomization

\/A\/\/

JIT-ROP

..but Attackers Can Often Knock the Bar Off

Code Injection
WAX
Code Reuse/ROP
ASLR
Disclosure-aided ROP
Code Randomization

JIT-ROP

X
>
>

\VAVAVAY

Main Research Objectives

Design novel software shielding techniques
Code diversification: undermine adversaries’ assumptions
Unneeded code and logic removal: reduce the attack surface
Data protection: keep sensitive data out of reach

Focus on emerging exploitation techniques
Disclosure-aided exploitation
Data-only attacks

Enable their practical applicability on commodity
software and systems

Alleviate current deployment obstacles faced by protections
that break software uniformity

Use Case: Code Diversification

Function/basic block/instruction reordering,
instruction substitution, register reassignment, ...

Effective mitigation against code reuse attacks
JIT-ROP can circumvent it

Prerequisite of execute-only memory protections
for defending against JIT-ROP

Despite decades of research, still not deployed

Lack of a transparent deployment model = users are
responsible for diversifying their software

Incompatible with debugging, crash reporting, whitelisting,
and other mechanisms that rely on software uniformity

Metadata-assisted Binary Transformation (1/3)

Metadata
Shielding transformations and analysis 2:2
SRC IR BIN BIN
main() { define 01001100 01001100
int a: 132 @main 10010011 EI—) 10010011
’ 00011101
01100111
_ _ Augmented
Source Intermediate Binary J
_ Executable
Code Representation Executable

Software vendors still release a single “master” executable, augmented with
transformation-assisting metadata

16

Metadata-assisted Binary Transformation (2/3)

BIN

01001100
10010011

~~ A Existing software ~— A
distribution channels

Augmented End User
Executable

Augmented executables are delivered in the same way as before, through the same
software distribution channels, while patching/updating is not affected

17

Metadata-assisted Binary Transformation (3/3)

BIN

BIN

01001100

Binary 01001100
10010011

10010011

Rewriter 000111
011001 U
Augmented Shielded
Executable Executable

At the client side, a binary rewriter leverages the embedded metadata to rapidly
generate a specialized (debloated/randomized/shielded) executable

18

Summary

Design nove
enable their
software and

Upcoming IE

software shielding techniques, and
oractical applicability to commodity
systems

EE S&P 18 paper and code release

Compiler-assisted Code Randomization. Hyungjoon Koo, Yaohui Chen,

Long Lu, Vasi

leios P. Kemerlis, Michalis Polychronakis

https://github.com/kevinkoo©01l/CCR

CAREER: Principled and Practical Software Shielding against Advanced Exploits
NSF CNS-1749895, $499,899 (6/1/2018 - 5/31/2023).

1\\\‘ Stony Brook University HE*LHAE

19

