NAMED DATA NETWORKING: AN INTERNET ARCHITECTURE FOR THE FUTURE

Christos Papadopoulos
Colorado State University

November 18, 2016
Work supported by NSF #1345236 and #13410999
Part of the NSF Future Internet Architecture FIA initiative

Goal: design the next generation Internet Architecture

NDN is one of four multi-institution teams funded in 2010-13, and 2014-16, \sim15M
NDN Institutions

http://named-data.net
http://github.com/named-data

Colorado State University
The Problem with Today’s Internet

- To find content in the network
- ..you have to learn where the content is
- ..and then ask the network to take you there
- ..so you can ask the server for what you want

- But no-one cares about servers anymore..
- ..we want the Data!
- Service model mismatch
Named Data Network (NDN)

- The main idea: **Name the data, not the hosts!**
- ..so you just give the network the name of the data you want..
- ..and let the network find it and get it to you
NDN Operation

- Publishers push **hierarchical** name prefixes into the network
- Users send **Interests** that follow path to published prefix
- “Breadcrumbs” direct **data** back to the user
- Data is **cached** into the network
Content Publishing

Routes

Server1
file: pr_19020101
announces: ../../../pr_1902/01

Server2
file: pr_19020201
announces: ../../../pr_1902/02

../../../pr_1902/01/
../../../pr_1902/02/

Colorado State University
Data Request

- Interests for Jan 30-31 go to server1
- Interests for Feb 01-02 go to server2
- Data dynamically extracted from file
This Sounds Awfully Complex..

It’s actually quite simple:

☐ First, name your datasets with a hierarchical, community agreed name:
 ☐ /store/mc/fall13/BprimeBprime_M_3000/GEN-SIM/POSTLS162_v1-v2/10000/<UUID.root>

☐ Then, advertise the prefix to the network:
 ☐ I can answer any questions starting with:
 ☐ /store/mc/fall13/BprimeBprime_M_3000/GEN-SIM/POSTLS162_v1-v2/*

☐ Finally, let users issue interests with the appropriate name or name prefix
Can it Scale?

- WUSTL Results for NDN Forwarding
- Software router prototype
- Preliminary hardware design
- Multi-gigabit forwarding rates for:
 - Name-based FIBs, based on real world URLs, of 1-3M entries;
 - Synthetic FIBs, based on model of future namespace, of up to 1B entries.
Named Data is Easy to Secure

- In the Internet you secure your path..
- ..but the server may still be hacked!
- In NDN you **sign** the data with a **digital signature**..
- ..so the users know when they get bad data!
Simplifying a Complex System: xrootd Cluster

Here is how xrootd works today:

1: open("/my/file")

2: Who has "/my/file"?

3: No

4: Try open() at A

5: open("/my/file")

Data Servers

Manager (a.k.a. Redirector)

Client
xrootd under NDN

No manager, fewer steps, more robust
Supporting Science Applications

- Scientific apps generate tremendous amounts of data and face challenging management issues
 - Climate science CMIP5 dataset: 3.5 PB
 - High Energy Physics (HEP): 1 PB/s raw data, ATLAS project filters to 4 PB/yr
 - Data distributed to various local repositories
 - Variety of data naming schemes
 - E.g. different units and user defined parameters
 - Data provenance

- Existing, mature, software for dataset discovery, publishing, and retrieval
 - E.g. ESGF, xrootd, etc.
 - Lots of effort to overcome fragility of IP’s host-centric paradigm
First Step – Build a Catalog

- Create a **shared resource** – a distributed, synchronized catalog of names over NDN
 - Provide common operations such as publishing, discovery, access control
 - Catalog only deals with name management, not dataset retrieval
 - Platform for further research and experimentation

- Research questions:
 - Namespace construction, distributed publishing, key management, UI design, failover, etc.
 - Functional services such as subsetting
 - Mapping of name-based routing to tunneling services (VPN, OSCARS, MPLS)
NDN Catalog

(1) Publish Dataset names

Publisher

Catalog node 1

(2) Sync changes

Data storage

Catalog node 2

(3) Query for Dataset names

NDN

Consumer

Catalog node 3

(4) Retrieve data
Forwarding Strategies

NDN

Publisher

Catalog node 1

Data storage

Catalog node 2

Consumer

Catalog node 3

Data storage
Science NDN Testbed

- NSF CC-NIE campus infrastructure award
 - 10G testbed (courtesy of ESnet, UCAR, and CSU Research LAN)
- Currently ~50TB of CMIP5, ~20TB of HEP data
Conclusions

- NDN encourages common data access methods where IP encourages common host access methods
 - NDN encourages interoperability at the content level
- Many playgrounds for you to play
 - Science, multimedia, IoT, Android, wireless and more
 - Ready-to-try catalog, supports a variety of applications
 - UI for data search and retrieval.
For More Info

christos@colostate.edu

http://named-data.net

http://github.com/named-data