
™



Prepared by: Jim Van Fleet (jim.van.fleet@levvel.io)

Approved by:

The TIER group of the Internet2 consortium has contracted with Levvel to produce an appliance that

packages the Shibboleth IDP software in a way that maximizes the ease with which member institutions can

begin using that software in production environments. The appliance in question is to be delivered via a

build pipeline that automates the construction of the appliance from its various components. Additionally,

the appliance is to use Docker to run any and all service processes required for proper software function.

This document is intended to describe the mechanisms via which container images are constructed and

tested for viability, and how, in turn, the appliance are constructed from those .

Container Construction

Build Pipeline

Testing Approach

Publishing a Container Image

Appliance Construction

Distributing the Appliance

Still to Resolve

While the details of container construction are best left to their own documents, we’ll note some of the

important elements of those containers regarding the rest of the pipeline.

We’ve created a ‘docker’ organization on Github Enterprise, and public repositories for several of the

desired container images therein. Each container repository will contain a Dockerfile, files and folders that

support construction of the container image by the Dockerfile, and a Jenkinsfile that defines the build

pipeline process.

Though Docker is a current focus of the TIER group, the group’s long-term commitment is for an appliance

(or appliance-like) mechanism that makes onboarding with Shibboleth IDP easier. Regardless of the

technologies surrounding the appliance, a build pipeline that automates the process of testing and

constructing the appliances should outlive any particular approach to its contents.

mailto:jim.van.fleet@levvel.io


The build pipeline will operate within TIER group’s AWS environment, and the instance running Jenkins will

be automated to a significant degree in the ‘docker/ansible-playbooks’ repository on I2’s GitHub Enterprise

installation.

Jenkins is a well-regarded, open source continuous integration server already adopted by other working

groups at Internet2. In its latest release, Jenkins offers a Pipeline feature that allows the behavior of the

build pipeline to be defined in source code rather than by Jenkins administrators. In addition to

empowering developers to define and manage stages of the pipeline over time, it unlocks the powerful

collaboration features of Jenkins and GitHub to facilitate development of the pipeline itself.

Additionally, Jenkins and GitHub Enterprise are commonly used together and there are several helpful

points of integration between the two. These include (but are not limited to) the following:

This permanently delegates user management within Jenkins to the GitHub Enterprise installation.

Permissions may still be managed within Jenkins, but uses reasonable defaults through a “GitHub

committer strategy” that selects reasonable access levels based on the user’s access to the GitHub

repository.

During our primary development, triggers will resolve automatically as development proceeds.

Development builds will not trigger the construction of an appliance, and may not publish a container

image to Dockerhub. In the event a container image is published to Dockerhub, it will be clearly labelled

and tagged so that it cannot be used by the general populace.

At this time, the appliance build will be triggered manually. It will track official Shibboleth IDP releases.

Our build pipeline is designed both to facilitate the development of container images in the short term and

to construct appliances in the long term. During development, responsive triggers and unit testing can

identify and help eliminate most errors quickly. While many of our ‘units’ are straightforward, they may be as

complex as an interdependent service with a large configuration surface area. For more complex cases, we

will supplement our unit testing with integration testing.

In the repositories for each container image, our pipeline engineer will be able to create scripts that

provide a variety of assurances regarding proper function. Examples include, but are not limited to, the

following:



Ensuring that running a container image leaves a running docker process

Ensuring the running container binds to a defined port on the host

Ensuring that a command executed inside the container exits successfully, or produces desired

output.

We further anticipate that we will be able to collate these results and display them in aggregate over time

to help determine if we need to make certain aspects of the container image easier to develop with.

If a container image passes its unit tests, it then becomes appropriate to test that container image in a

controlled environment simulating real-world conditions. The process of creating an appliance generates a

meaningful intermediate output that allows us to perform integration testing on EC2 with relative ease.

Since this is time- and cost-intensive, we plan to build this capability, but not to perform it as a part of every

check-in. We recommend decisions regarding timing of integration testing be evaluated on an image by

image basis.

If a container image has passed its battery of tests, we recommend distributing the image via Dockerhub

(or other Docker registry). This process can be performed automatically by the pipeline with contextually

appropriate additional tags or labels depending on the context of the triggered build.

After a container image has been published, we can leverage that container image from inside an

appliance we construct. Our target appliance is the VirtualBox OVF (or Open Virtualization Format) which is

widely compatible with VMware as well. Packer from Hashicorp offers native support for constructing

appliances of this kind.

Because our build pipeline runs on EC2 (itself a virtualized environment), however, direct access to binaries

needed to support packer in using VMware or VirtualBox builders cannot be used[1]. Our approach uses

additional EC2 and AWS offerings to produce the desired outputs. The phases are as follows:

This phase is conducted on a developer laptop in our offices. We configure packer to use the VirtualBox

ISO builder, a distribution ISO from CentOS, and a kickstart file to allow packer to continue through

installation without a graphical interface. The output of the packer process is an OVF image that we can

import into AWS, where it’s exposed for use as an AMI

The Packer aws-ebs builder uses the AMI output by phase 1 as a starting place, then uses ansible as a

provisioner to install and configure all required software for the appliance. Finally, the instance is stopped



and the volume snapshot is used to construct another AMI.

In the third phase, using the AWS EC2 export functionality, we create an OVF from the provisioned AMI.

This functionality is only available to AMIs that were originally imported, which is why we must create an

OVF in phase 1. In addition to the desired OVF output in an S3 bucket we can configure to be publicly

available, this process realizes an additional benefit of creating an appliance AMI that can be used both in

our integration testing and also by the larger community.

We have so far deferred discussion on delivering successfully built appliances.

[1]We have not verified that VMWare Workstation Pro is incompatible with AWS, but it is inconvenient
enough that we are evaluating the approach described herein first, as it has other benefits. VirtualBox
certainly cannot be used on EC2.


